Featured Research

from universities, journals, and other organizations

Laboratory Study Explains Clinical Promise Of Anti-Angiogenesis Cancer Drug

September 11, 2002
University Of Michigan Health System
For nearly five years, doctors at the University of Michigan Comprehensive Cancer Center have noted promising cancer-slowing results from early clinical trials of a drug that lowers the level of copper in cancer patients' blood.

ANN ARBOR, MI – For nearly five years, doctors at the University of Michigan Comprehensive Cancer Center have noted promising cancer-slowing results from early clinical trials of a drug that lowers the level of copper in cancer patients' blood.

Related Articles

Now, new U-M laboratory research results are telling them exactly how that experimental drug works, and showing them its cancer-fighting potential on a cellular level. The findings, published in the current issue of the journal Cancer Research, have implications for the approach to cancer treatment known as anti-angiogenesis.

The paper describes how the drug -- tetrathiomolybdate, or TM -- keeps tumor cells from sending signals that spur the formation of new blood vessels. By keeping copper low and blocking the NFkB signaling pathway, the researchers believe, TM blocks the angiogenesis, or blood-vessel creation, that lets cancer grow and spread.

Angiogenesis is thought to be a common denominator for many kinds of cancer, allowing tumors to grow locally and to metastasize to the rest of the body. The U-M team explored TM's anti-angiogenic potential using four methods in mice and cells.

Specifically, they showed that TM suppressed the growth of tumors in mice implanted with cells from an aggressive form of human breast cancer; kept new blood vessels from forming in cancer-prone cultures of rat artery cells; squelched the release of a key signaling molecule known to spur blood vessel formation; and prevented the formation of tumors in mice specially bred to develop breast cancer.

"Taken together, these results support the initial findings of the clinical trials that have been done with TM, and indicate that copper reduction can inhibit tumor angiogenesis with minimal adverse effects," says senior author Sofia D. Merajver, M.D., Ph.D., associate professor of internal medicine and director of the U-M Breast and Ovarian Cancer Risk Evaluation Program. She notes that the copper reduction achieved with TM is far greater that what can be achieved through diet alone.

Merajver has helped lead clinical and laboratory investigations of TM for cancer at the U-M for several years, including a current Phase II trial for advanced breast cancer patients. TM is also being tried at the U-M and other centers in patients with prostate cancer, breast cancer, head and neck cancer, multiple myeloma, liver cancer, mesothelioma and other malignancies.

The drug was originally developed for medical use by George Brewer, M.D., the Morton and Henrietta Sellner Professor of Human Genetics at the U-M, to treat the excess copper levels caused by a rare genetic disorder known as Wilson's disease.

Made up of sulfur and molybdenum, TM latches on to copper in the blood, and to a protein called albumin, in a process called chelation. The three-part complex formed by this bonding is then eliminated by the body.

TM has saved the lives of dozens of Wilson's disease patients treated at the U-M Health System's General Clinical Research Center, ridding their bodies of copper that would have damaged their brains and livers, and eventually would have killed them.

Even as the Wilson's disease treatment at the U-M began to achieve success in the 1990s, research at the U-M and elsewhere started to uncover the role of copper in angiogenesis -- both the normal process that goes on constantly in the body, and the uncontrolled angiogenesis seen in cancer. Researchers found that copper was important to various "growth factors" that are necessary to the organizing process by which cells become part of new blood vessels.

Spurred by these discoveries, Merajver and Brewer teamed up for laboratory studies of TM against cancer. This led to a Phase I trial in a group of late-stage patients with various forms of cancer, whose results were published in January, 2000 in the journal Clinical Cancer Research.

That trial was intended just to test TM's safety and ability to lower copper levels in cancer patients. But it showed evidence of tumor stabilization in a handful of patients whose copper levels were reduced to one-fifth their original levels for three months or more.

Since that time, U-M researchers have studied TM on parallel clinical and basic research tracks. Currently, dozens of patients are enrolled in various Phase II trials at the U-M Comprehensive Cancer Center.

Meanwhile, Merajver and her team have continued to pursue the basic laboratory research needed to show how TM produces its anti-angiogenesis effect.

In the new study, the team used two animal models of breast cancer -- one in which mice were given cancer by the transfer of human inflammatory breast cancer cells, and one using mice that had been specially bred to ensure that nearly all would develop cancer in their first year.

The results were striking. The mice with the aggressive human breast cancer "xenografts" that received TM had their tumor size suppressed by 69 percent, compared with mice that did not receive TM. Mice that received TM showed only sparse blood vessels in their tumors.

As for the mice genetically "preprogrammed" for breast cancer, none of the ones given TM preventively developed tumors. This statistically significant disease-free survival ended, though, when the mice were taken off TM -- all of them developed tumors within two weeks. Microscope studies showed that those given TM had "microtumors" in their breast areas, suggesting that the cancer had started to form but could not grow bigger without a blood supply.

The research also used two in vitro, or cell-culture, approaches. In one, rings cut from the aortas of rats (a kind of tissue that's likely to form new blood vessels) were bathed in a culture of inflammatory breast cancer cells.

In the other, the researchers inserted breast cell and breast cancer cell nuclei with a genetic sequence into that could only be transcribed, or "read", by the NFkB transcription factor -- along with a snippet of DNA that produced a telltale glowing molecule whenever NFkB did its job. In the cancer cell culture, NFkB activity was 2.5 times greater than that in the breast cell culture, but when TM was added to the disk, NFkB activity went down almost twice as much in cancer cells as in normal cells.

When the researchers looked at the genes involved in making the proteins that actually make up the NFkB molecule, they found that TM treatment cut the production of those proteins significantly. And when they looked at the interleukin and growth factor molecules whose transcription NFkB usually controls, the levels were lower in the presence of TM too.

"It appears that TM exerts its anti-angiogenic action at least in part by restricting the release of factors that promote angiogenesis, and by suppressing NFkB activity," says Merajver. "This is potentially exciting from a clinical perspective because NFkB is involved in cancer's resistance to chemotherapy and radiation therapy. And, the suppressive effect we've seen suggests a promising role for TM as a chemopreventive agent, in people who carry alterations in genes that make them susceptible to cancer."

The research was funded in part by the National Institutes of Health, the Food and Drug Administration, the U-M Comprehensive Cancer Center and the American Cancer Society. The drug has been licensed to Attenuon, LLC, a San Diego biotechnology company.

Besides Merajver and Brewer, the study's authors are: lead author Quintin Pan, M.D., Celina Kleer, M.D., Kenneth van Golen, Ph.D., Diane Robins, Ph.D., Jennifer Irani and Kristen Bottema, all of the University of Michigan Comprehensive Cancer Center; Robert D. Dick of the U-M Medical School Department of Human Genetics; and Carlos Bias, Magda de Carvalho, and Enrique Mesri of the Weill Medical College of Cornell University.

For more information on clinical research at the U-M Comprehensive Cancer Center, call the Cancer AnswerLine at 800-865-1125 or visit http://www.cancer.med.umich.edu/contact.htm.

Story Source:

The above story is based on materials provided by University Of Michigan Health System. Note: Materials may be edited for content and length.

Cite This Page:

University Of Michigan Health System. "Laboratory Study Explains Clinical Promise Of Anti-Angiogenesis Cancer Drug." ScienceDaily. ScienceDaily, 11 September 2002. <www.sciencedaily.com/releases/2002/09/020911074513.htm>.
University Of Michigan Health System. (2002, September 11). Laboratory Study Explains Clinical Promise Of Anti-Angiogenesis Cancer Drug. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/2002/09/020911074513.htm
University Of Michigan Health System. "Laboratory Study Explains Clinical Promise Of Anti-Angiogenesis Cancer Drug." ScienceDaily. www.sciencedaily.com/releases/2002/09/020911074513.htm (accessed February 26, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com
Michigan Couple Celebrates Identical Triplets

Michigan Couple Celebrates Identical Triplets

AP (Feb. 25, 2015) A suburban Detroit couple who have two older children are adjusting to life after becoming parents to identical triplets _ a multiple birth a doctor calls rare. (Feb. 25) Video provided by AP
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins