Featured Research

from universities, journals, and other organizations

Study Helps Explain Gene Silencing In The Developing Embryo

Date:
October 30, 2002
Source:
University Of North Carolina School Of Medicine
Summary:
New research at the University of North Carolina sheds light on the process that silences a group of genes in the developing embryo.

CHAPEL HILL - New research at the University of North Carolina sheds light on the process that silences a group of genes in the developing embryo.

Down regulation of gene expression or "gene silencing" is considered crucial in normal development. In the embryo, proteins expressed by different sets of genes help signal the pattern of development, including limb formation. However, when that work is completed, the genes responsible must be turned off, explains Dr. Yi Zhang, assistant professor of biochemistry and biophysics at UNC-Chapel Hill School of Medicine and a member of the Lineberger Comprehensive Cancer Center.

"During the early embryonic development, a group of genes called Hox genes needs to be expressed. After they've been expressed and have set the body pattern, they have to be silenced permanently during the life of the organism," Zhang said.

According to Zhang, another gene group known as the Polycomb group has been intensely studied for its role in silencing Hox in organisms ranging from flies to mammals, including humans. "We know that if something is wrong with the Polycomb group, if these genes are mutated and cannot silence Hox, then development becomes abnormal."

Writing in the Nov 1 issue of Science, Zhang and co-authors from UNC; Southern Methodist University, Dallas, Texas; and Memorial Sloan Kettering Cancer Center, New York, NY, report the purification and characterization of a Polycomb group protein complex. Importantly, their research has established a link between Polycomb gene silencing and histone protein methylation, the addition of a methyl group to lysine, one of the amino acids that comprise the tail region of histone molecules.

Four core histone proteins are highly conserved in eukaryotic organisms, those having nucleated cells. These histones are involved in packaging our genetic information, DNA. Each contain a globular domain and an amino terminal "tail." Of interest to Zhang and others at UNC and elsewhere is that histones, specifically processes that modify them including methylation, are thought to play a major role in gene expression and cell division.

"Basically, we found that the Polycomb proteins function through methylating a particular lysine residue, lysine 27, on histone 3," Zhang said. When enzyme activity causing methylation of this site is blocked, Hox gene silencing does not occur.

Given those findings, Zhang and his study team could explain the permanence of Hox gene silencing. "Histone methylation cannot be reversed. It becomes permanent, a long-term genetic marker. Thus far, no 'histone demethylase' has been discovered."

It may well be that methylation and other modifications of histone proteins are part of an emerging "histone code" of modifications that ultimately regulate gene expression. This code was postulated three years ago by Drs. David Allis and Brian Strahl at the University of Virginia. (Strahl is now at UNC.) Currently under investigation by Zhang and colleagues in several departments at UNC, a histone code would be in addition to the now familiar genetic code of repeating As, Cs, Gs, and Ts of DNA nucleotide sequences.

Through this histone code, differentially modified histone proteins could organize the genome into stretches of active and silent regions. Moreover, these regions would be inherited during cell division.

The study was supported by grants from the National Institute of General Medicine at NIH and the American Cancer Society.


Story Source:

The above story is based on materials provided by University Of North Carolina School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina School Of Medicine. "Study Helps Explain Gene Silencing In The Developing Embryo." ScienceDaily. ScienceDaily, 30 October 2002. <www.sciencedaily.com/releases/2002/10/021030074400.htm>.
University Of North Carolina School Of Medicine. (2002, October 30). Study Helps Explain Gene Silencing In The Developing Embryo. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2002/10/021030074400.htm
University Of North Carolina School Of Medicine. "Study Helps Explain Gene Silencing In The Developing Embryo." ScienceDaily. www.sciencedaily.com/releases/2002/10/021030074400.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins