Featured Research

from universities, journals, and other organizations

Jefferson Scientists Find Evidence Of Greater Sensitivity To Addictive Drugs In Adolescence

Date:
November 4, 2002
Source:
Thomas Jefferson University
Summary:
Researchers at Jefferson Medical College have evidence in animals that the young, adolescent brain may be more sensitive to addictive drugs such as cocaine and amphetamines than either the adult or newborn. The work may help someday lead to a better understanding of how the adolescent human brain adapts to such drugs, and provide clues into changes in the brain that occur during drug addiction.

Researchers at Jefferson Medical College have evidence in animals that the young, adolescent brain may be more sensitive to addictive drugs such as cocaine and amphetamines than either the adult or newborn. The work may help someday lead to a better understanding of how the adolescent human brain adapts to such drugs, and provide clues into changes in the brain that occur during drug addiction.

Related Articles


Scientists led by Michelle Ehrlich, M.D., professor of neurology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and a member of the Farber Institute for Neurosciences at Jefferson, and Ellen Unterwald, Ph.D., associate professor of pharmacology at the Temple University School of Medicine in Philadelphia, found a greater increase in a certain protein in the part of the adolescent mouse brain called the striatum following chronic exposure to drugs such as amphetamine or cocaine than they did in either very young mice or adults.

Such psychostimulant drugs affect the brain's striatum in different ways, potentially affecting both movement and locomotion, or the "reward" system. This "molecular adaptation," says Dr. Ehrlich, could be significant. "An increase in this protein may be important because it could also affect other molecules that could lead to long-lasting changes in the brain in response to psychostimulant drugs." The protein, called Delta FosB, is a transcription factor and plays a role in regulating gene expression. Earlier research by other scientists had shown increased amounts of Delta FosB in adult brains following chronic exposure to psychostimulants.

The team, which includes scientists at the Nathan Kline Institute in Orangeburg, New York, reports its findings November 1 in the Journal of Neuroscience.

"Periadolescence and adolescence are when addiction usually begins, so we will be looking to see if this increase is a clue to sensitivity to addiction and sensitivity to such drugs as therapeutic agents," says Dr. Ehrlich.

"Many molecules have been implicated in both therapeutic and addictive responses to psychostimulants," she notes. Dr. Ehrlich's team examined how the mice responded to cocaine and amphetamine. They looked at the effects of the drugs on Delta FosB in three different age groups: post-weanling, or day 22; adolescent, days 33-43; and adult, or about six weeks of age. Each group was given cocaine, amphetamine or saline.

They found that in the adult, Delta FosB was increased in the caudate nucleus, part of the striatum associated with motor activity, particularly hyperactivity and attention deficit syndrome. They did not see similar increases in the accumbens, another part of the striatum that is associated with reward from psychostimulants. In the post-weanling mice, there was an increased response in the caudate only to amphetamine.

When they looked at the adolescent mice, they found Delta FosB was made in increased amounts in both areas of the brain in response to the drugs.

"The implications are that there is an increased adaptation in the younger brain than in the older brain to these psychostimulants," she says.

The results raise several questions. "What are the behavioral correlates of this increase in protein activity?" says Dr. Ehrlich. "Does this make them more prone to self-administer psychostimulants, meaning these mice could be a model of addiction? Does this make them more prone to hyperactivity? Are they more tolerant of higher doses of medication? These questions are relevant to addiction and to therapeutic use of these medications in these age groups."

Dr. Ehrlich and her co-workers have begun looking at the causes of such adaptations in the brain. They are studying some of the specific molecules involved in new mouse models. "At this point, many of the drugs that are being used therapeutically and in the treatment of addiction are being targeted to very restricted molecules," she says. "The question is, would they be better targeted to other molecules?"


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Cite This Page:

Thomas Jefferson University. "Jefferson Scientists Find Evidence Of Greater Sensitivity To Addictive Drugs In Adolescence." ScienceDaily. ScienceDaily, 4 November 2002. <www.sciencedaily.com/releases/2002/11/021104064833.htm>.
Thomas Jefferson University. (2002, November 4). Jefferson Scientists Find Evidence Of Greater Sensitivity To Addictive Drugs In Adolescence. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2002/11/021104064833.htm
Thomas Jefferson University. "Jefferson Scientists Find Evidence Of Greater Sensitivity To Addictive Drugs In Adolescence." ScienceDaily. www.sciencedaily.com/releases/2002/11/021104064833.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins