Featured Research

from universities, journals, and other organizations

New Tool For Studying Animal Models Of Neurological And Psychiatric Diseases

Date:
November 6, 2002
Source:
Brookhaven National Laboratory
Summary:
Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have demonstrated that a miniature positron emission tomography (PET) scanner, known as microPET, and the chemical markers used in traditional PET scanning are sensitive enough to pick up subtle differences in neurochemistry between known genetic variants of mice.

UPTON, NY -- Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have demonstrated that a miniature positron emission tomography (PET) scanner, known as microPET, and the chemical markers used in traditional PET scanning are sensitive enough to pick up subtle differences in neurochemistry between known genetic variants of mice.

This "proof-of-principle" experiment, described in the November issue of the Journal of Nuclear Medicine, "opens up a whole new, non-invasive way to study and follow transgenic or genetically engineered strains of mice that serve as animal models for human neurological diseases, such as Parkinson's and Alzheimer's disease or psychiatric diseases such as substance abuse, depression, and anxiety disorders," said Panayotis (Peter) Thanos, lead author of the paper. Studying animal models may help scientists better understand and develop treatments for the human diseases.

Thanos and his team used microPET to measure the level of "D2" receptors for dopamine -- a brain chemical associated with feelings of reward and pleasure, which has been found to play a role in drug addiction -- in the brains of normal mice and so-called knockout mice, which had been genetically engineered to lack the gene for D2. The dopamine D2 receptor has been implicated in a wide variety of neuropsychiatric disorders, including, in recent studies by Brookhaven researchers, alcoholism and substance abuse. Thus, these D2-deficient mice are important for studying human diseases.

Before the scans, each mouse was given an injection of a radiotracer molecule designed to bind to D2 receptors. The microPET scanner then picked up the signal from the tracer to show where and how much was bound in various parts of the brain. The level of the tracer indicates the number of receptors.

In the striatum, a region of the brain normally rich in D2 receptors, "deficient" mice had significantly lower levels of tracer binding compared with their normal counterparts. There was no difference in tracer binding between strains in the cerebellum, an area of the brain that normally lacks D2 receptors, which was studied for comparison.

The scientists ruled out anatomical differences as a possible explanation for their results by comparing magnetic resonance imaging (MRI) brain scans of the two strains, which showed no differences. They also confirmed the difference in D2 receptor levels between "deficient" and normal mice with traditional autoradiography, where tissue samples are labeled with a radiotracer to reveal receptor levels.

"The results clearly show that microPET is an excellent technique that can pick up the neurochemical difference between the two strains in a non-invasive way," Thanos said. "And because this technique can be used in living animals, we can now study how these neurochemical differences between genetic strains of mice affect behavior and/or disease progression over time in the same animals," he said.

The technique can easily be extended to study other human neurological or psychiatric diseases for which knockout animal models exist, such as Alzheimer's and Parkinson's disease, or even depression and anxiety disorders.

This work was funded by the National Institute on Alcohol Abuse and Alcoholism, the National Institute on Drug Abuse, and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

The U.S. Department of Energy's Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "New Tool For Studying Animal Models Of Neurological And Psychiatric Diseases." ScienceDaily. ScienceDaily, 6 November 2002. <www.sciencedaily.com/releases/2002/11/021105080258.htm>.
Brookhaven National Laboratory. (2002, November 6). New Tool For Studying Animal Models Of Neurological And Psychiatric Diseases. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2002/11/021105080258.htm
Brookhaven National Laboratory. "New Tool For Studying Animal Models Of Neurological And Psychiatric Diseases." ScienceDaily. www.sciencedaily.com/releases/2002/11/021105080258.htm (accessed September 1, 2014).

Share This




More Plants & Animals News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins