Featured Research

from universities, journals, and other organizations

Exotic Innards Of A Neutron Star Revealed In A Series Of Explosions

Date:
November 8, 2002
Source:
NASA/Goddard Space Flight Center
Summary:
Amid the fury of 28 thermonuclear blasts on a neutron star's surface, scientists using the European Space Agency's (ESA) XMM-Newton X-ray satellite have obtained a key measurement revealing the nature of matter inside these enigmatic objects.

Amid the fury of 28 thermonuclear blasts on a neutron star's surface, scientists using the European Space Agency's (ESA) XMM-Newton X-ray satellite have obtained a key measurement revealing the nature of matter inside these enigmatic objects.

The result, capturing for the first time the ratio between such an ultra-dense star's mass and radius in an extreme gravity environment, is featured in the November 7 issue of Nature. Dr. Jean Cottam of NASA's Goddard Space Flight Center in Greenbelt, Md., leads this international effort.

The neutron star -- the core remains of a star once bigger than the Sun yet now small enough to fit within the Washington Beltway -- contains densely packed matter under forces that perhaps existed at the moment of the Big Bang but which cannot be duplicated on Earth. The contents offer a crucial test for theories describing the fundamental nature of matter and energy.

Cottam and her team probed the neutron star's interior by measuring for the first time how light passing through the star's half-inch atmosphere is warped by extreme gravity, a phenomenon called the gravitational redshift. The extent of the gravitational redshift, as predicted by Einstein, depends directly on the neutron star's mass and radius. The mass-to-radius ratio, in turn, determines the density and nature of the star's internal matter, called the equation of state. "It is only during these bursts that the region is suddenly flooded with light and we were able to detect within that light the imprint, or signature, of material under extreme gravitational forces," said Cottam. The neutron star is part of a binary star system named EXO 0748-676, located in the constellation Volans, or Flying Fish, about 30,000 light-years away in the Milky Way galaxy, visible in southern skies with a large backyard telescope.

Scientists estimate that neutron stars contain the mass of about 1.4 Suns compacted into about a 10-mile-wide sphere (16 kilometers). At such density, all the space is squeezed out of the atoms inside the neutron star, and protons and electrons squeeze into neutrons, leaving a neutron superfluid, a liquid that flows without friction. By understanding the precise ratio of mass to radius, and thus pressure to density, scientists can determine the nature of this superfluid and speculate on the presence of exotic matter and forces within -- the type of phenomena that particle physicists search for in earthbound particle accelerators. Today's announcement states that EXO 0748-676's mass-to-radius ratio is 0.152 solar masses per kilometer, based on a gravitational redshift measurement of 0.35. This provides the first observational evidence that neutron stars are indeed made of tightly packed neutrons, as predicted by theory estimating mass-radius, density-pressure ratios. "Unlike the Sun, with an interior well understood, neutron stars have been like a black box," said co-author Dr. Frits Paerels of Columbia University in New York. "We have bored our first small hole into a neutron star. Now theorists will have a go at the little sample we have offered them," he said. More important, said co-author Dr. Mariano Mendez of SRON, the National Institute for Space Research in the Netherlands, "We have now established a means to probe the bizarre interior of a 10-mile-wide chunk of neutrons thousands of light-years away -- based on gravitational redshift. With the fantastic light-collecting potential of XMM-Newton, we can measure the mass-to-radius ratios of other neutron stars, perhaps uncovering a quark star." In a quark star, which is denser than a neutron star and has a different mass-to-radius ratio, neutrons are squeezed so tightly they liberate the subatomic quark particles and gluons that are the building blocks of atomic matter. To obtain its measurement, the team needed the fantastic radiance provided by thermonuclear bursts, which illuminate matter very close to the neutron star surface where gravity is strongest. The team spotted the 28 bursts during a series of XMM-Newton observations of the neutron star totaling 93 hours. There are dozens of known binary systems with neutron stars, like EXO 0748-676, where such bursting is seen several times a day, the result of gas pouring onto the neutron star from its companion star. ESA's XMM-Newton was launched in December 1999. NASA helped fund mission development and supports guest observatory time. Goddard Space Flight Center hosts the U.S. guest visitor-support center. Jean Cottam joins Goddard through a grant from the National Research Council.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "Exotic Innards Of A Neutron Star Revealed In A Series Of Explosions." ScienceDaily. ScienceDaily, 8 November 2002. <www.sciencedaily.com/releases/2002/11/021108072808.htm>.
NASA/Goddard Space Flight Center. (2002, November 8). Exotic Innards Of A Neutron Star Revealed In A Series Of Explosions. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2002/11/021108072808.htm
NASA/Goddard Space Flight Center. "Exotic Innards Of A Neutron Star Revealed In A Series Of Explosions." ScienceDaily. www.sciencedaily.com/releases/2002/11/021108072808.htm (accessed July 29, 2014).

Share This




More Space & Time News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
NASA EDGE: OCO-2 Launch

NASA EDGE: OCO-2 Launch

NASA (July 25, 2014) NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins