Featured Research

from universities, journals, and other organizations

High-fat Diet Protects Newborn Brain From Seizure Damage, Study Suggests

Date:
March 3, 2003
Source:
University Of California - Irvine
Summary:
Medical advice rarely supports a high-fat diet, but a team of UC Irvine researchers has found that such a diet protects newborn brain cells from damage caused by prolonged seizures.

Irvine, Calif. -- Medical advice rarely supports a high-fat diet, but a team of UC Irvine researchers has found that such a diet protects newborn brain cells from damage caused by prolonged seizures.

Related Articles


New findings from a study on infant rats suggest that the high-fat diet of newborns, and the related increased production of a specific protein, protects their brain cells from damage that otherwise may accompany prolonged seizures. The finding may lead to new strategies to prevent brain injury in adults.

Seizures affect one in every 25 infants and children and over one percent of all adults, where they may be associated with progressive loss of brain volume. Therefore, understanding how the immature brain prevents seizure-induced cell injury or death could point the way for researchers to develop new strategies aimed at preventing such damage in the mature brain.

In a study published in the online issue of the Annals of Neurology, Dr. Tallie Z. Baram, the Danette Shepard Chair in Neurological Sciences, and her team found very high levels of a protein called uncoupling protein 2 (UCP2) in the brains of newborn rats. UCP2 production is stimulated by fatty acids, which are the products of dietary fat metabolism. This high level of UCP2 may provide the protection from brain damage seen in infants who have seizures.

In the mature brain, seizures and other trauma kill and damage nerve cells by interfering with structures called mitochondria. Popularly referred to as "the energy factories of cells," these cellular structures shuttle compounds back and forth during metabolic processes to produce energy.

"However," Baram said, "a seizure can 'rev up' brain cells and their corresponding demand for fuel. The energy assembly line cannot keep up with this demand, the system gets jammed, reactive oxygen compounds form, and the cell is injured or dies."

Surprisingly, the neonatal and immature brain seems to be immune to this damage.

Baram and her colleagues hypothesized that uncoupling proteins -- specifically UCP2 found in mitochondrial membranes -- reduce the formation of reactive oxygen compounds and decrease the potential for cell injury in the brains of immature rats. They found that UCP2 function and levels were significantly greater in immature animals. UCP2 production is increased by fatty acids, the breakdown products of dietary fat, and rat pups obtain most of their nutrition from maternal milk, which is very rich in fat.

The protective actions of UCP2 may also help explain why the ketogenic high-fat diet works in human children to prevent or dramatically reduce seizures, Baram said. This diet is used to treat severe, medicine- resistant seizures in children.

Although some preliminary unpublished data suggest a high-fat diet enhances UCP2 levels in the brains of mature mice, fatty acids may be less influential on the brain chemistry of older animals. "This critical issue obviously needs to be carefully evaluated," said Baram.


Story Source:

The above story is based on materials provided by University Of California - Irvine. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Irvine. "High-fat Diet Protects Newborn Brain From Seizure Damage, Study Suggests." ScienceDaily. ScienceDaily, 3 March 2003. <www.sciencedaily.com/releases/2003/03/030303074257.htm>.
University Of California - Irvine. (2003, March 3). High-fat Diet Protects Newborn Brain From Seizure Damage, Study Suggests. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2003/03/030303074257.htm
University Of California - Irvine. "High-fat Diet Protects Newborn Brain From Seizure Damage, Study Suggests." ScienceDaily. www.sciencedaily.com/releases/2003/03/030303074257.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins