Featured Research

from universities, journals, and other organizations

New Mouse Virus May Help Scientists Better Understand Cruise Ship Epidemics

Date:
March 7, 2003
Source:
Washington University School Of Medicine
Summary:
A close relative of a common little-understood human virus that causes an estimated 23 million episodes of intestinal illness, 50,000 hospitalizations and 300 deaths each year has been discovered in mice. The finding by scientists at Washington University School of Medicine in St. Louis is reported in the March 7 issue of the journal Science.

St. Louis, March 7, 2003 -- A close relative of a common little-understood human virus that causes an estimated 23 million episodes of intestinal illness, 50,000 hospitalizations and 300 deaths each year has been discovered in mice. The finding by scientists at Washington University School of Medicine in St. Louis is reported in the March 7 issue of the journal Science.

Related Articles


Discovery of the new virus, known as murine norovirus 1 (MNV-1), may lead to a better understanding of its disease-causing cousins known as Norwalk viruses, or human noroviruses (HNVs). HNVs cause 90 percent of epidemic viral gastroenteritis worldwide, including those that sweep through cruise ships, nursing homes and military encampments causing debilitating diarrhea and vomiting.

"We know very little about human noroviruses because they cannot be grown in the laboratory or in animals," says study leader Herbert W. Virgin IV, M.D., Ph.D., professor of pathology and immunology and associate professor of molecular microbiology. "This new mouse virus will for the first time allow us to study this important class of human pathogens."

Virgin and colleagues discovered the virus in a strain of immune-deficient mice that were being reared for use in other research. When five of six mice died in one cage, the researchers decided to investigate. They took tissue from the dead mice and filtered and injected it into healthy mice, some of which had normal immunity and some of which were immune-deficient.

The mice with normal immunity remained healthy; the immune-deficient mice died. This indicated an infectious agent was present that healthy mice could resist but that killed immune-deficient mice. Further analysis identified the previously unknown norovirus.

The investigators then went a step further to determine what part of the mouse immune system is most important for fending off the infection.

The original mice had been engineered to lack two proteins: Rag (for recombination activating gene) and Stat1 (for signal transducer and activator of transcription 1).

Animals that lack the Rag do not develop T cells, B cells and antibodies. They therefore cannot recognize specific proteins, or antigens, that are found on viruses, bacteria and parasites. That is, the animals lack so-called adaptive immunity, which begins fighting viruses within a few days of infection.

Animals without Stat1 lack the other half of the immune system, known as innate immunity. Innate immunity kicks in immediately to fight infection, in part by causing cells to produce anti-viral molecules known as interferons. Mice that lack Stat1 cannot respond efficiently to interferon and lose most of their innate immune response. Mice deficient in both Rag and Stat1 have no adaptive and very limited innate immunity.

Virgin and colleagues discovered that mice with Stat1 but lacking Rag survived MNV-1 infection, while those lacking both Rag and Stat1 or Stat1 alone grew sick and died from it. They concluded that a strong innate immune response is essential for fighting off the virus.

"We were surprised to find that T cells or B cells weren't needed to prevent lethal infection by this virus," Virgin says. "Mice without adaptive immunity seem to survive just fine."

Herpes and most other viruses kill mice that lack adaptive immunity, he adds.

The findings also have implications for commercial facilities that develop immune-deficient mice for use in research.

"Our data strongly suggest that infectious agents, including unknown infectious agents, should be considered when interpreting experiments that use immune-deficient mice," Virgin says. "Otherwise, one might conclude that an immune response was due to experimental conditions when in fact it may be due to a new pathogen."

Virgin also suggests that other scientists investigate unexplained deaths in immune-deficient mice.

"It may reveal other new viruses that might be useful for studying human biology and human infectious disease," he says.

###

Karst SM, Wobus CE, Lay M, Davidson J, Virgin IV, HW. STAT1-dependent immunity to a novel Norwalk-like virus. Science, March 7, 2003.

Funding from the National Institute of Allergy and Infectious Diseases supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "New Mouse Virus May Help Scientists Better Understand Cruise Ship Epidemics." ScienceDaily. ScienceDaily, 7 March 2003. <www.sciencedaily.com/releases/2003/03/030307072339.htm>.
Washington University School Of Medicine. (2003, March 7). New Mouse Virus May Help Scientists Better Understand Cruise Ship Epidemics. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2003/03/030307072339.htm
Washington University School Of Medicine. "New Mouse Virus May Help Scientists Better Understand Cruise Ship Epidemics." ScienceDaily. www.sciencedaily.com/releases/2003/03/030307072339.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins