Featured Research

from universities, journals, and other organizations

Sunlight Converts Common Anti-bacterial Agent To Dioxin

Date:
April 15, 2003
Source:
University Of Minnesota
Summary:
Sunlight can convert triclosan, a common disinfectant used in anti-bacterial soaps, into a form of dioxin, and this process may produce some of the dioxin found in the environment, according to research at the University of Minnesota.

MINNEAPOLIS / ST. PAUL -- Sunlight can convert triclosan, a common disinfectant used in anti-bacterial soaps, into a form of dioxin, and this process may produce some of the dioxin found in the environment, according to research at the University of Minnesota. The researchers said that although the dioxin was a relatively benign form, treating wastewater with chlorine could possibly lead to the production of a much more toxic species of dioxin. The study is in press in the Journal of Photochemistry and Photobiology A: Chemistry.

It had already been known that triclosan could be converted to dioxin in the laboratory, and it was also known that sunlight causes triclosan to degrade in the environment. But it had not been known that the natural degradation resulted in dioxin, said researchers Kristopher McNeill, an assistant professor of chemistry, and William Arnold, assistant professor of civil engineering. They discovered that the reaction could occur in Mississippi River water exposed to ultraviolet light.

"This form of dioxin is at least 150,000 times less toxic than the most dangerous form," said McNeill. "But repeated exposure to chlorine, perhaps in water treatment facilities, could chlorinate triclosan. After chlorinated triclosan is discharged from the facility, sunlight could convert it into more toxic dioxins. Such a process could be a source of highly toxic dioxin in the environment."

"This study also shows that the disappearance of a pollutant such as triclosan doesn't necessarily mean an enviromental threat has been removed," said Arnold. "It may just have been converted into another threat."

The researchers began their study after reading numerous environmental studies that reported the presence of pharmaceutical compounds in surface waters around the nation. McNeill and Arnold decided that the logical next step was to examine the natural processes that led to the loss of such materials in the environment. Last year, the U.S. Geological Survey published a widely circulated study of chemicals in surface water, in which triclosan was found in 58 percent of natural waters tested. Its median concentration was 0.14 parts per billion; the maximum was 2.3 ppb. McNeill and Arnold chose to study triclosan because they could tell from its structure that it would likely break down in sunlight.

In their study, McNeill and Arnold added triclosan to river water, shined ultraviolet light on the water, and found that between one percent and 12 percent of the triclosan was converted to dioxin.

"The fact that this conversion can happen in surface layers of rivers may not cause harm by itself, but it suggests that more serious reactions--leading to more toxic forms of dioxin--may also happen when triclosan enters the environment," said Arnold. "We want to determine if this is the case." As a first step in sorting out the relations, if any, between triclosan and more toxic dioxin, McNeill and Arnold plan studies to determine whether they tend to occur together in natural waters.

The researchers said that even low levels of very toxic dioxin are worrisome because dioxin readily accumulates in organisms and becomes more concentrated in tissues as it moves up the food chain.

The study was funded by the U.S. Geological Survey, through the National Institutes of Water Resources. Triclosan is manufactured by Ciba-Geigy.


Story Source:

The above story is based on materials provided by University Of Minnesota. Note: Materials may be edited for content and length.


Cite This Page:

University Of Minnesota. "Sunlight Converts Common Anti-bacterial Agent To Dioxin." ScienceDaily. ScienceDaily, 15 April 2003. <www.sciencedaily.com/releases/2003/04/030415083625.htm>.
University Of Minnesota. (2003, April 15). Sunlight Converts Common Anti-bacterial Agent To Dioxin. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2003/04/030415083625.htm
University Of Minnesota. "Sunlight Converts Common Anti-bacterial Agent To Dioxin." ScienceDaily. www.sciencedaily.com/releases/2003/04/030415083625.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins