Featured Research

from universities, journals, and other organizations

Students Will See How Liquids Behave When Gravity Is Gone

Date:
April 16, 2003
Source:
Johns Hopkins University
Summary:
Most students can only imagine what it feels like for an astronaut to conduct scientific research while floating freely inside a spacecraft. This week, for four Johns Hopkins undergraduates, that fantasy is set to become a reality.

Most students can only imagine what it feels like for an astronaut to conduct scientific research while floating freely inside a spacecraft. This week, for four Johns Hopkins undergraduates, that fantasy is set to become a reality.

Flying in a NASA jet that produces brief periods of weightlessness, the students will get a small taste of space-travel sensations. They''ll have to keep their feet on the ground at least figuratively, however, because these periods of microgravity will occur while they're conducting experiments to learn how liquids mix on a surface when gravity is not a factor. Their research could lead to more efficient ways to combine or move fluids aboard space shuttles and the International Space Station.

The team of seven students -- four fliers and three ground crew members -- left for Houston on April 8 to undergo several days of NASA training. This week, four of the students expect to take part in two days of experiments aboard a KC-135 aircraft that is sometimes referred to as the "weightless wonder." The jet has also been dubbed the "vomit comet" because it induces motion sickness in some passengers. "A lot of people have said this project is so cool, but that's the one thing to be nervous about," said Paul Nerenberg, one of the student team members.

By flying in a parabolic path, the NASA jet can create periods of microgravity lasting up to 23 seconds, simulating conditions in outer space. The team's faculty adviser, Cila Herman, a professor of mechanical engineering, is quick to point out that "this is not just an opportunity for the students to have fun pretending to be astronauts. They are going to be conducting some serious science experiments." Herman, who completed her own microgravity tests aboard a KC-135 in 1999, advised the students to eat a light dinner the night before their flight, to skip breakfast the next morning -- "if they can survive without it" -- and to take their motion sickness pills.

The microgravity flights will mark the culmination of a process that began months ago when the students prepared a research proposal and submitted it to NASA's Reduced Gravity Students Flight Opportunities Program. The project was named Surface Tension Impelled Low-Gravity Liquid Mixing Experiment, or STILLMix for short. "We want to learn how surface tension affects the mixing and spreading of liquids on a surface without gravity's interference," said Paul Gosling, a physics major who serves as team leader. "Driven mixing on surfaces is something we don't really know much about. On Earth, gravity is a muddling and dominating force when you're trying to study it."

To study how liquids move and mix on a surface when gravity is nearly gone, the students designed and assembled a test rack equipped with 18 pairs of syringes, each with curved tips facing one another. During each period of microgravity, the students will squeeze a set of syringes, sending two liquids toward each other atop a plate made of aluminum, which encourages fast spreading. On some of the plates, however, the students have attached strips of Teflon tape, which is more resistant to spreading liquids. By setting up a zipper-like pattern with the tape, the students hope to learn whether this jagged shape encourages more mixing than a smooth head-on meeting of the fluids.

Four liquids in various combinations will be tested: water, silicone oil, ethyl alcohol and minimal essential medium. Each liquid will be dyed to make its behavior easier to see. Each test will be taped by a digital video camera mounted on the frame, to allow a closer analysis after the aircraft returns to Earth. The students hope to perform 18 experiments on each of the two flights.

Learning more about how liquids mix and spread on a surface in weightless conditions is important, the students said, because moving fluids aboard a spacecraft by mechanical devices requires power, which must be conserved as much as possible in space. In addition, the students' research may shed light on whether astronauts could manufacture their own spare parts in space through a plastic injection molding process.

Along with Gosling, a senior from San Jose, Calif., and Nerenberg, a junior physics major from Los Angeles, two other students are slated to carry out the experiments on board the NASA aircraft: Henry Mowry Cook III, a junior from Cheyenne, Wyo., majoring in physics and engineering mechanics, and Mike Sharma, a junior from Wilmington, N.C., majoring in mechanical engineering.

Three other team members will provide ground support: Sara Marten, a junior from Proctorville, Ohio, majoring in mechanical engineering; Sam Phillips, a junior from Randolph, Vt., majoring in civil engineering; and Yo-Rhin Rhim, a senior from Englewood Cliffs, N.J., majoring in mechanical engineering.

Although NASA did not require the students to pay for their microgravity flights, the team members did have to raise funds for their experimental equipment, travel and lodging. In this effort, the team received assistance from Lani Hummel and Kuria Gecau in the Whiting School of Engineering's Office of Industrial Initiatives. The project received financial support from the Whiting School, the Krieger School of Arts and Sciences, Kathleen Sharma of the Blue Heaven Bed and Breakfast, the Maryland Space Grant Consortium, the National Office of the Society of Physics Students, Northrop Grumman and William and Dorothy Nerenberg.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Students Will See How Liquids Behave When Gravity Is Gone." ScienceDaily. ScienceDaily, 16 April 2003. <www.sciencedaily.com/releases/2003/04/030416090021.htm>.
Johns Hopkins University. (2003, April 16). Students Will See How Liquids Behave When Gravity Is Gone. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2003/04/030416090021.htm
Johns Hopkins University. "Students Will See How Liquids Behave When Gravity Is Gone." ScienceDaily. www.sciencedaily.com/releases/2003/04/030416090021.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins