Featured Research

from universities, journals, and other organizations

Designing A Better Catalyst For 'Artificial Photosynthesis'

Date:
September 10, 2003
Source:
Brookhaven National Laboratory
Summary:
Scientists studying the conversion of carbon dioxide (CO2) to carbon monoxide (CO) -- a crucial step in transforming CO2 to useful organic compounds such as methanol -- are trying to mimic what plants do when they convert CO2 and water to carbohydrates and oxygen in the presence of chlorophyll and sunlight.

NEW YORK, NY -- Scientists studying the conversion of carbon dioxide (CO2) to carbon monoxide (CO) -- a crucial step in transforming CO2 to useful organic compounds such as methanol -- are trying to mimic what plants do when they convert CO2 and water to carbohydrates and oxygen in the presence of chlorophyll and sunlight. Such "artificial photosynthesis" could produce inexpensive fuels and raw materials for the chemical industry from renewable solar energy. But achieving this goal is no simple task.

"Nature has found a way to do this over eons," says Etsuko Fujita, a chemist at the Department of Energy's Brookhaven National Laboratory. "It's very complicated chemistry."

Nature uses chlorophyll as a light absorber and electron-transfer agent. However, chlorophyll does not directly react with CO2. If you take it out of the plant and place it in an artificial system, it decomposes rather quickly, resulting in only a small amount of CO production.

So Fujita and others trying to mimic photosynthesis have turned to artificial catalysts made from robust transition metal complexes such as rhenium complexes. These catalysts absorb solar energy and transfer electrons to CO2, releasing CO. But until now, no one had explained how these processes work in detail. By studying these reactions over very short and long timescales (ranging from 10-8 seconds to hours), Fujita and her colleagues at Brookhaven have discovered an important intermediate step. A most intriguing result is the involvement of two energetic metal complexes to activate one CO2 molecule. Without CO2, the complexes dimerize much more slowly than expected.

The Brookhaven scientists' work, incorporating a combined experimental and theoretical approach, may help to explain why the reaction proceeds so slowly, which may ultimately contribute to the design of more efficient catalysts.

Fujita will present a talk on this work, which will be published in the Oct. 1 Journal of the American Chemical Society, during the "Organometallic Catalysis" session on Tuesday, September 9, 2003, at 2:30 p.m. in the Jacob Javits Convention Center, room 1A29. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE's Office of Science.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Designing A Better Catalyst For 'Artificial Photosynthesis'." ScienceDaily. ScienceDaily, 10 September 2003. <www.sciencedaily.com/releases/2003/09/030910073052.htm>.
Brookhaven National Laboratory. (2003, September 10). Designing A Better Catalyst For 'Artificial Photosynthesis'. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2003/09/030910073052.htm
Brookhaven National Laboratory. "Designing A Better Catalyst For 'Artificial Photosynthesis'." ScienceDaily. www.sciencedaily.com/releases/2003/09/030910073052.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins