Featured Research

from universities, journals, and other organizations

'Buckyball' Material Brings Light Into Line

Date:
September 15, 2003
Source:
University Of Toronto
Summary:
Using molecules resembling 60-sided soccer balls, a joint team of researchers from the University of Toronto and Carleton University has created a new material for processing information using light.

Using molecules resembling 60-sided soccer balls, a joint team of researchers from the University of Toronto and Carleton University has created a new material for processing information using light.

Related Articles


Led by U of T electrical and computer engineering professor Ted Sargent and Carleton University chemistry professor Wayne Wang, the team developed a material that combines microscopic spherical particles known as "buckyballs" with polyurethane, the polymer used as a coating on cars and furniture. The buckyballs, given the chemical notation C60, are clusters of 60 carbon atoms resembling soccer balls that are only a few nanometres in diameter. (A nanometre equals a billionth of a metre.)

When the mixture of polyurethane and buckyballs is used as a thin film on a flat surface, light particles travelling though the material pick up each others' patterns. These materials have the capacity to make the delivery and processing of information in fibre-optic communications more efficient.

"In our high-optical-quality films, light interacts 10-to-100 times more strongly with itself, for all wavelengths used in optical fibre communications, than in previously reported C60-based materials," says Sargent, a professor at U of T's Edward S. Rogers Sr. Department of Electrical and Computer Engineering. "We've also shown for the first time that we can meet commercial engineering requirements: the films perform well at 1550 nanometres, the wavelength used to communicate information over long distances."

Light-made up of particles called photons-is widely used in fibre-optic networks to communicate trillions of bits of information each second over long distances. At the moment, these fast and free-flowing signals are difficult to harness. The new material is described in a study in the Sept. 15 issue of Applied Physics Letters.

"The key to making this powerful signal-processing material was to master the chemistry of linking together the buckyballs and the polymer," says Wang, Canada Research Chair in Emerging Organic Materials at Carleton University in Ottawa.

According to Sargent, the Nortel Networks-Canada Research Chair in Emerging Technologies, "this work proves that 'designer molecules' synthesized using nanotechnology can have powerful implications for future generations of computing and communications networks."

###

The research was supported by the Ontario Research and Development Challenge Fund, Nortel Networks, the Natural Sciences and Engineering Research Council of Canada, Canada Research Chairs Foundation, the Canada Foundation for Innovation and the Ontario Innovation Trust.


Story Source:

The above story is based on materials provided by University Of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University Of Toronto. "'Buckyball' Material Brings Light Into Line." ScienceDaily. ScienceDaily, 15 September 2003. <www.sciencedaily.com/releases/2003/09/030915072827.htm>.
University Of Toronto. (2003, September 15). 'Buckyball' Material Brings Light Into Line. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2003/09/030915072827.htm
University Of Toronto. "'Buckyball' Material Brings Light Into Line." ScienceDaily. www.sciencedaily.com/releases/2003/09/030915072827.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did the Simpsons Figure out the Higgs Boson Particle Years Before Scientists

Did the Simpsons Figure out the Higgs Boson Particle Years Before Scientists

Buzz60 (Mar. 4, 2015) During a 1998 Simpsons episode, Homer Simpson scribbled a seemingly gibberish equation on a chalkboard. Turns out that equation is a shake off from predicting the actual nano mass of the God Particle. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com
Wearables Now the Must-Haveables

Wearables Now the Must-Haveables

Reuters - Business Video Online (Mar. 3, 2015) Telecom company executives are meeting in Barcelona for the Mobile World Congress, the largest annual trade show for the wireless industry. As Ivor Bennett reports from the show wearable technology is one of the big themes. Video provided by Reuters
Powered by NewsLook.com
Forensic Holodeck Creates 3D Crime Scenes

Forensic Holodeck Creates 3D Crime Scenes

Reuters - Innovations Video Online (Mar. 3, 2015) A holodeck is no longer the preserve of TV sci-fi classic Star Trek, thanks to researchers from the Institute of Forensic Medicine Zurich, who have created what they say is the first system in the world to visualise the 3D data of forensic scans. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins