Featured Research

from universities, journals, and other organizations

OHSU Scientists Uncover Key Protein For Fanconi Anemia, Cancer Susceptibility

Date:
September 17, 2003
Source:
Oregon Health & Science University
Summary:
Isolation of a new protein in the Fanconi anemia (FA) pathway is a major step in understanding how proteins associated with the rare, inherited disorder function to ensure normal development and prevent cancer.

PORTLAND, Ore. – Isolation of a new protein in the Fanconi anemia (FA) pathway is a major step in understanding how proteins associated with the rare, inherited disorder function to ensure normal development and prevent cancer. The study will appear online during the week of Sept. 14, 2003, and is scheduled for publication in the October 2003 edition of the journal Nature Genetics.

Scientists found that inactivation of the newly discovered protein, PHF9, disables the function of the FA pathway, a network of proteins that appears to be critical for many cellular processes, including repair of damaged DNA, blood development and fertility.

"What's intriguing about the proteins in the Fanconi pathway is that they don't contain familiar sequences, so until the discovery of PHF9, there have been very few clues about how they actually function," said Maureen Hoatlin, Ph.D., assistant professor of molecular medicine in the Oregon Health & Science University School of Medicine, who worked to isolate and characterize the function of PHF9 with colleagues at the National Institute on Aging; Free University Medical Center, Amsterdam; and the Baylor College of Medicine.

The isolation of PHF9 demonstrates a new way of recognizing FA genes by using direct analysis of the components contained in the Fanconi protein complex, Hoatlin said. Previously, several Fanconi genes were discovered by finding their positions on chromosomes, or by going to a library of genes to select one that would correct the defects.

PHF9 is a member of a multicomponent Fanconi protein complex. It is believed to trigger the function of another FA protein, FANCD2, discovered and cloned in February 2001 by Markus Grompe, M.D., professor of molecular and medical genetics, and pediatrics in the OHSU School of Medicine. When the function of PHF9 is disrupted, FANCD2 is not modified, and the pathway short-circuits, leading to the disease hallmarks of FA.

"Finally, a Fanconi protein with a recognizable catalytic function," Hoatlin said. Unlike the majority of other Fanconi proteins, PHF9 has easily recognizable functional domains that should accelerate research aimed at understanding the function of the FA protein network, particularly in the maintenance of a stable genome, the "hard drive" of the cell where genetic information is stored.

Fanconi anemia is a rare, genetic cancer-susceptibility syndrome. When both parents carry a defective or mutated FA gene, children are at increased risk of developing the disorder, which can lead to birth defects, bone marrow failure and increased incidence of cancer, including leukemias and solid tumors. In addition, there is a growing appreciation among scientists that the FA pathway is integrated with the breast-ovarian cancer-susceptibility pathway.

Scientists estimate that the worldwide carrier frequency for Fanconi anemia is between 1 in 600 and 1 in 100, according to the nonprofit foundation Fanconi Anemia Research Fund Inc.

Dave Frohnmayer, who with his wife, Lynn, formed the Fanconi Anemia Research Fund after losing two daughters to the disease in the 1990s, called the PHF9 isolation study "a major discovery." He said it will thrust FA research into the mainstream of science, and its results have the potential to benefit not just dozens, but millions of people.

"This discovery has worldwide significance," said Frohnmayer, president of the University of Oregon in Eugene. "From day one, Oregon Health & Science University has been on the ground floor of Fanconi anemia research, so this is yet another welcome discovery by outstanding scientists."

The Fanconi Anemia Research Fund, as well as the National Institutes of Health, funded portions of the Oregon PHF9 work.

Frohnmayer has seen the number of FA studies increase dramatically in the last two years as more and more people discover that it is not just a rare, orphan disease. The PHF9 project "shows there may be an even more fundamental connection not only to cancer-causing processes, but to human aging processes generally."

"It shows that the research discipline intersects with new material in very unexpected ways," he added. "And often times, some of the greatest discoveries are the unexpected ones."


Story Source:

The above story is based on materials provided by Oregon Health & Science University. Note: Materials may be edited for content and length.


Cite This Page:

Oregon Health & Science University. "OHSU Scientists Uncover Key Protein For Fanconi Anemia, Cancer Susceptibility." ScienceDaily. ScienceDaily, 17 September 2003. <www.sciencedaily.com/releases/2003/09/030917073641.htm>.
Oregon Health & Science University. (2003, September 17). OHSU Scientists Uncover Key Protein For Fanconi Anemia, Cancer Susceptibility. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2003/09/030917073641.htm
Oregon Health & Science University. "OHSU Scientists Uncover Key Protein For Fanconi Anemia, Cancer Susceptibility." ScienceDaily. www.sciencedaily.com/releases/2003/09/030917073641.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins