Featured Research

from universities, journals, and other organizations

Better Model Of Cancer Development Sheds Light On Potential Angiogenesis Target

Date:
October 21, 2003
Source:
Johns Hopkins Medical Institutions
Summary:
Johns Hopkins Kimmel Cancer Center researchers have learned that a common, cancer-linked gene thought to control blood vessel growth may not turn out to be useful as an effective target for cancer drug development.

Johns Hopkins Kimmel Cancer Center researchers have learned that a common, cancer-linked gene thought to control blood vessel growth may not turn out to be useful as an effective target for cancer drug development. Their research, published in the October issue of Cancer Cell found that results of previous studies that pinned hope on the Id1 gene may not hold up in a mouse model thought to more accurately represent how humans get cancer.

Related Articles


The scientists began their study attempting to confirm previous work, including their own, suggesting that Id1 activation was an important step in tumor angiogenesis, a process that builds blood vessels needed for tumor growth.

In the earlier research on Id1, scientists used a mouse model in which tumor cells were injected directly into the animals to stimulate cancer growth: in effect, a tumor transplant. The tumors grew in the animals with Id1 activation while the injected tumors failed to grow in mice whose Id1 genes were inactivated.

"But this is not how people get cancer," says Rhoda Alani, M.D., director of the study and assistant professor of oncology, dermatology, molecular biology and genetics at the Johns Hopkins Kimmel Cancer Center. "We get cancer through a series of genetic events that occur over time, triggered by both internal and external factors."

In the Hopkins investigator's new model, mice were exposed to carcinogens placed on their skin and allowed to gradually develop cancer. Results showed a completely opposite outcome with respect to Id1: all mice with the Id1 gene turned off developed more tumors that also were larger than in previous studies.

"Clues to promising cancer drug development are only as good as the model in which you study a process," says Alani. "If knocking out the Id1 gene in two different models produces two different results, then we need to reevaluate the role that Id1 plays in angiogenesis."

In the model using skin carcinogen exposure, the team's preliminary findings suggest that cancers may develop faster in mice without Id1 because inactivation of the Id1 gene triggers alterations in a receptor on skin immune cells called gamma delta T cells. With a faulty receptor, these cells fail to migrate to the skin to fight off cancer cells.

"We realize that studies based on tumor transplant models are quicker and easier to perform in the laboratory, but it's important to study both the transplant and genetic models to get a clear picture of how genes interact," she says. The researchers believe that the tumor transplant model is most similar to the process of cancer metastasis, in which Id1-associated angiogenesis is likely to play an important role.

The research was funded by the National Institutes of Health, the Flight Attendant Medical Research Institute, the American Skin Association, and the V Foundation.

Study participants include Hashmat Sikder, David L. Huso, Binghe Wang, Byungwoo Ryo, and Jonathan D. Powell from Johns Hopkins; Hong Zhang and Sam T. Hwang from the National Cancer Institute.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Better Model Of Cancer Development Sheds Light On Potential Angiogenesis Target." ScienceDaily. ScienceDaily, 21 October 2003. <www.sciencedaily.com/releases/2003/10/031021062136.htm>.
Johns Hopkins Medical Institutions. (2003, October 21). Better Model Of Cancer Development Sheds Light On Potential Angiogenesis Target. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2003/10/031021062136.htm
Johns Hopkins Medical Institutions. "Better Model Of Cancer Development Sheds Light On Potential Angiogenesis Target." ScienceDaily. www.sciencedaily.com/releases/2003/10/031021062136.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins