Featured Research

from universities, journals, and other organizations

Dose Of PTEN Protein Found To Determine Progression Of Prostate Cancer

Date:
October 27, 2003
Source:
Memorial Sloan-Kettering Cancer Center
Summary:
For the first time, scientists at Memorial Sloan-Kettering Cancer Center have established mouse models for prostate cancer that have varying "doses" or amounts of Pten protein produced from the remaining gene. Their results show that the activity of the single Pten gene does not necessarily protect against prostate cancer.

NEW YORK, NY – October 27 - In patients with prostate cancer, one change that can be seen at the molecular level is the loss of the PTEN tumor suppressor gene, a gene responsible for restricting cell proliferation. One or both copies of the PTEN gene are found to have been lost in 70 percent of prostate cancer patients at the time of diagnosis. It has generally been believed that one remaining copy would still protect against tumor progression to advanced metastatic cancer.

Related Articles


But now, for the first time, scientists at Memorial Sloan-Kettering Cancer Center have established mouse models for prostate cancer that have varying "doses" or amounts of Pten protein produced from the remaining gene. Their results show that the activity of the single Pten gene does not necessarily protect against prostate cancer. Instead, the dose determines whether the tumor will become either an aggressive cancer or take a slow path towards microscopic features of growth, but remain benign. This new understanding of the natural history of the disease could allow researchers to develop novel clinical strategies to diagnose, treat, and possibly prevent prostate cancer. This article will appear both as HTML and in print in the December 23, 2003 issue of the new, open access journal published by the Public Library of Science. It appears in PDF form online as a pre-issue publication on October 27, 2003 at www.plosbiology.org.

"We have shown that prostate cancer development is not just affected by mutation and loss of the PTEN gene but that its progression is dose-dependent on the PTEN protein, which we have measured for the first time," said Pier Paolo Pandolfi, M.D., Ph.D., Head of the Molecular and Developmental Biology Laboratory at Memorial Sloan-Kettering and the study's senior author. "Two men, each with one PTEN gene left, could have totally different disease outcomes depending on the actual dose of PTEN protein coming from that gene."

Earlier studies by Drs. Pier Paolo Pandolfi and Antonio Di Cristofano had demonstrated that loss of the Pten tumor suppressor gene in mice is responsible for a variety of malignant tumors. In humans, these were shown to include melanoma and cancers of the breast, prostate, and brain. Although the loss of just one Pten gene is enough to affect cell signaling, the loss has only been associated with slow-growing, mild lesions in the mouse prostate, comparable to early stages of the human disease. Therefore, many scientists in the field assumed that one copy of the Pten gene was still sufficient to prevent the progression to malignant cancer, in agreement with the classic definition of tumor suppressor genes.

To test this assumption, two sets of mouse models were generated. In one, the Pten gene was engineered to be removed completely from the prostate only (whole body deletion cannot be studied since it causes a lethal defect in the embryo). In the second model, mice were engineered to have only one half-active copy of the Pten gene left (roughly 30 percent protein level). In stark contrast to mice with one gene copy, the mice with no Pten gene showed aggressive, invasive prostate cancer that developed in just a short period, perhaps suggesting that the major danger in having only one copy of the Pten gene (50 percent of the normal protein level) would be to lose it (and go to zero percent). However, the mice with one half-active gene also developed prostate tumors while those with the fully active copy did not. This refuted the notion that only complete loss of the Pten gene can cause prostate cancer and instead suggests that prostate tumor development correlates closely with the actual Pten protein level.

"We analyzed the mice at a time when they should have been healthy but instead found massive prostate enlargement and cancer," explained Lloyd Trotman, Ph.D., a member of Dr. Pandolfi's Molecular and Developmental Biology Laboratory at Memorial Sloan-Kettering and a first author of the study along with Masaru Niki M.D., Ph.D. "Most importantly, this showed that dropping the Pten protein dose slightly below the 50 percent level has dramatic consequences for disease progression in just a short period."

"This study shows the consequences of serial reductions in a critical gene on prostate cancer development and progression," said Dr. Howard Scher, Chief of the Genitourinary Oncology Service at Memorial Sloan-Kettering. "It shifts the focus from targets of the PTEN gene to the PTEN protein itself. Restoring the function of the gene to stabilize the PTEN level may be clinically beneficial. These findings also show that to understand an individual's prognosis and to optimize the therapeutic approach to an individual patient's tumor, it will be necessary to determine the absolute level of key signaling proteins, and not simply whether the protein is present or absent. Developing these methods is an area of active investigation."

The study's co-authors include Zohar A. Dotan, Jason A. Koutcher, Antonio Di Cristofano, Alan S. Khoo, and Carlos Cordon-Cardo of Memorial Sloan-Kettering; Andrew Xiao and Terry Van Dyke of University of North Carolina at Chapel Hill; Pradip Roy-Burman of Keck School of Medicine, UCLA; and Norman Greenberg of Baylor College of Medicine. The study was supported, in part, by grants from the National Cancer Institute, Memorial Sloan- Kettering, and by I.T. Hirschl/M. Weill Caulier Foundation.

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest institution devoted to prevention, patient care, research and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide.


Story Source:

The above story is based on materials provided by Memorial Sloan-Kettering Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

Memorial Sloan-Kettering Cancer Center. "Dose Of PTEN Protein Found To Determine Progression Of Prostate Cancer." ScienceDaily. ScienceDaily, 27 October 2003. <www.sciencedaily.com/releases/2003/10/031027061154.htm>.
Memorial Sloan-Kettering Cancer Center. (2003, October 27). Dose Of PTEN Protein Found To Determine Progression Of Prostate Cancer. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2003/10/031027061154.htm
Memorial Sloan-Kettering Cancer Center. "Dose Of PTEN Protein Found To Determine Progression Of Prostate Cancer." ScienceDaily. www.sciencedaily.com/releases/2003/10/031027061154.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins