Featured Research

from universities, journals, and other organizations

JPL Researchers Unveil Superconductor-Based Light Detector

Date:
October 27, 2003
Source:
NASA/Jet Propulsion Laboratory
Summary:
A new and improved way to measure light has been unveiled by physicists at NASA’s Jet Propulsion Laboratory and the California Institute of Technology, both in Pasadena, Calif. The technology exploits the strange but predictable characteristics of superconductivity, and has a number of properties that should lead to uses in a variety of fields, from medicine to astrophysics.

A new and improved way to measure light has been unveiled by physicists at NASA’s Jet Propulsion Laboratory and the California Institute of Technology, both in Pasadena, Calif. The technology exploits the strange but predictable characteristics of superconductivity, and has a number of properties that should lead to uses in a variety of fields, from medicine to astrophysics.

Related Articles


Reporting in the October 23 issue of Nature, JPL researchers Drs. Peter Day and Henry LeDuc, along with Dr. Jonas Zmuidzinas, a Caltech physics professor, outline the specifications of their superconducting detector. The device is cleverly designed to sidestep certain limitations imposed by nature to allow for very subtle and precise measurements of electromagnetic radiation, which includes visible light, radio signals, X-rays and gamma rays, as well as infrared and ultraviolet frequencies.

At the heart of the detector is a strip of material that is cooled to such a low temperature that electrical current flows unimpeded -- in other words, a superconductor. Scientists have known for some time that superconductors function as they do because of electrons in the material being linked together as "Cooper pairs" with a binding energy just right to allow current to flow with no resistance. If the material is heated above a certain temperature, the Cooper pairs are torn apart by thermal fluctuations, and the result is electrical resistance.

The researchers designed their device to register the slight changes that occur when an incoming photon -- the basic unit of electromagnetic radiation -- interacts with the material and affects the Cooper pairs. The device can be made sensitive enough to detect individual photons, as well as their wavelengths or color.

However, a steady current run through the superconducting material is not useful for measuring light, so the researchers have also figured out a way to measure the slight changes in the superconductor's properties caused by the breaking of Cooper pairs. By applying a high-frequency microwave field of about 10 gigahertz, a slight lag in the response due to the Cooper pairs can be measured.

In fact, the individual frequencies of the photons can be measured very accurately with this method, which should provide a significant benefit to astrophysicists, as well as researchers in a number of other fields, Zmuidzinas said.

"In astrophysics, this will give you lots more information from every photon you detect," he explained. "There are single-pixel detectors in existence that have similar sensitivity, but our new detector allows for much bigger arrays, potentially with thousands of pixels."

Such detectors could provide a very accurate means of measuring the fine details of the cosmic microwave background radiation, which is the relic of the intense light that filled the early universe. It’s detectable today as an almost uniform glow of microwave radiation coming from all directions.

Measurements of the radiation are of tremendous interest in cosmology today because of extremely faint variations in the intensity of the radiation that form an intricate pattern over the entire sky. These patterns provide a unique image of the universe as it existed just 300 thousand years after the Big Bang, long before the first galaxies or stars formed. The intensity variations are so faint, however, that it has required decades of effort to develop detectors capable of mapping them.

It was not until 1992 that the first hints of the patterns imprinted in the radiation by structure in the early universe were detected by the Cosmic Background Explorer satellite. In 2000, using new detectors developed at JPL and Caltech, the Boomerang experiment, led by Caltech physicist Dr. Andrew Lange, produced the first resolved images of these patterns. Other experiments, most notably the Cosmic Background Imager of Caltech astronomer Dr. Tony Readhead, and the Wilkinson Microwave Anisotropy Probe, led by Dr. Charles L. Bennett of NASA’s Goddard Space Flight Center, Greenbelt Md, have confirmed and extended the results to even higher resolution. The images obtained by these experiments have largely convinced the cosmology research community that the universe is geometrically flat and that the theory of rapid inflation proposed by Dr. Alan Guth, a physicist at the Massachusetts Institute of Technology, Cambridge, Mass., is a reality.

Ben Mazin and Anastasios Vayonakis, Caltech graduate students working in Zmuidzinas's lab, also contributed to the paper. The research was funded by NASA’s Aerospace Technology Enterprise, the JPL Director’s Research and Development Fund, and Caltech’s President’s Fund.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "JPL Researchers Unveil Superconductor-Based Light Detector." ScienceDaily. ScienceDaily, 27 October 2003. <www.sciencedaily.com/releases/2003/10/031027062020.htm>.
NASA/Jet Propulsion Laboratory. (2003, October 27). JPL Researchers Unveil Superconductor-Based Light Detector. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2003/10/031027062020.htm
NASA/Jet Propulsion Laboratory. "JPL Researchers Unveil Superconductor-Based Light Detector." ScienceDaily. www.sciencedaily.com/releases/2003/10/031027062020.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins