Featured Research

from universities, journals, and other organizations

"Jelly Belly" Gene: OHSU Researchers Discover Molecular Signaling System Controlling Aspects Of Embryonic Development

Date:
October 29, 2003
Source:
Oregon Health & Science University
Summary:
Researchers at Oregon Health & Science University (OHSU) have identified a secreted signaling protein that regulates smooth muscle development in fruit flies. In the absence of a protein called "Jelly Belly (Jeb)," primitive smooth muscle cells fail to migrate or differentiate, according to study results published in the October 2 issue of Nature.

Researchers at Oregon Health & Science University (OHSU) have identified a secreted signaling protein that regulates smooth muscle development in fruit flies. In the absence of a protein called "Jelly Belly (Jeb)," primitive smooth muscle cells fail to migrate or differentiate, according to study results published in the October 2 issue of Nature.

"Our research shows that Jelly Belly is required for the normal development of the smooth muscle that surrounds the gut in flies and we are investigating it in the arteries of mammals. It is also related to the development of heart muscle," said Joseph B. Weiss M.D., Ph.D., principal investigator and assistant professor (molecular medicine and cardiology), and Heart Research Center scientist in the OHSU School of Medicine.

Smooth muscles are involved in involuntary but essential functions, such as digestion and control of blood flow. Unlocking the genetic mechanisms controlling their embryonic development may allow scientists to understand better what triggers their abnormal growth. Human disorders that are linked to abnormal smooth muscle growth or function include high blood pressure, arteriosclerosis and congenital heart defects.

"Weiss has discovered a link in the chain of events that signals primitive cells in the fruit fly embryo to become muscle cells. The findings are key to our quest to identify embryonic genes that are linked to cardiac diseases," said Kent L. Thornburg, Ph.D., professor of medicine (cardiology) and director of the OHSU Heart Research Center. Molecules in fruit flies are functionally similar to molecules in humans typically allowing discoveries in fruit fly biology to be extrapolated to humans. Weiss's findings also illuminate an aspect of how embryonic cells organize themselves into the complex body plans observed across the animal world, including humans. At the embryonic stage, identical primitive cells somehow "choose" a path that determines their biological destiny, specifying the organ or tissue they will ultimately become. While scientists have long known that signals exchanged between cells control this process, little is known about the intricacies of these developmental systems.

This research showed that the Jeb protein controls the choice of certain embryonic cells between two fates. The cells that receive the Jeb signal become "founder cells" that function as pioneers to organize the development of smooth muscle. Cells that do not get the Jeb signal become "fusion cells" that attach to and fuse with founder cells to augment muscle mass.

This work established the essential signaling role of the Jeb protein. However, the identity of the molecular "Jeb-sensor" remained unknown. Finding this receptor was crucial to provide the complete molecular foundation needed for developing new drugs.

"Receptor and signal pairs are ideal targets for medicines because this is where human biology gets very specific. Identifying the players allows us to design drugs targeted at a precise molecular interaction. These types of drugs tend to have the maximum therapeutic impact with the fewest side effects," said Weiss.

Previous independent studies had identified a cell-surface receptor protein called anaplastic lymphoma kinase (Alk) in the late 1990s. All that was known about human Alk was that it could cause lymphoma if abnormally regulated; its normal function had not been determined.

After initial publication of Weiss's research on Jeb, scientists at New York's Mt. Sinai School of Medicine observed that the published expressions of Alk and Jeb appeared compatible and hypothesized that Jeb could be the protein that activates the Alk receptor. Subsequent collaborative studies between OHSU and Mt. Sinai researchers in fruit flies confirmed this hypothesis.

In addition to identifying a central signaling pathway for smooth muscle development, these collaborative results have expanded the clinical applications of Weiss's initial research. Given the role of Alk in cancer, Weiss speculates that other tumors caused by abnormal regulation of Jeb-like activators pf Alk, would respond to drugs that target the interaction between Jeb and Alk.

Further, other studies suggest that the Jeb-Alk signaling pathway may also be important in adults. So far, Weiss and colleagues have found the Jeb protein in adult neurons, hinting that this signaling mechanism may play an essential role in neurological function. Already, an independent study has found a Jeb-like molecule in an adult worm (C. elegans), which appears to play a role in learning and memory.

"The same molecules that regulate growth and development in embryos can be expected to play a role in adaptive functions in the adult," said Weiss.

Weiss is currently conducting research to determine the possible role of Jeb in the function of the normal nervous system and, by comparison, the role of the Jeb-Alk signaling mechanism in adult neurological disorders.

###

Weiss's research is funded in part by the National Institutes of Health/National Heart, Lung and Blood Institute, Howard Hughes Medical Institute and the American Heart Association.


Story Source:

The above story is based on materials provided by Oregon Health & Science University. Note: Materials may be edited for content and length.


Cite This Page:

Oregon Health & Science University. ""Jelly Belly" Gene: OHSU Researchers Discover Molecular Signaling System Controlling Aspects Of Embryonic Development." ScienceDaily. ScienceDaily, 29 October 2003. <www.sciencedaily.com/releases/2003/10/031029065020.htm>.
Oregon Health & Science University. (2003, October 29). "Jelly Belly" Gene: OHSU Researchers Discover Molecular Signaling System Controlling Aspects Of Embryonic Development. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2003/10/031029065020.htm
Oregon Health & Science University. ""Jelly Belly" Gene: OHSU Researchers Discover Molecular Signaling System Controlling Aspects Of Embryonic Development." ScienceDaily. www.sciencedaily.com/releases/2003/10/031029065020.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins