Featured Research

from universities, journals, and other organizations

Little-studied Waves In The Heart May Be Cause Of Defibrillation Failure

Date:
December 9, 2003
Source:
Vanderbilt University
Summary:
Vanderbilt University researchers believe a slow electrochemical wave, known as a damped wave, may be one of the reasons that low-voltage defibrillation shocks fail to halt fibrillation in cardiac patients.

NASHVILLE, Tenn. – Vanderbilt University researchers believe a slow electrochemical wave, known as a damped wave, may be one of the reasons that low-voltage defibrillation shocks fail to halt fibrillation in cardiac patients.

Related Articles


The findings by Vanderbilt University researchers John Wikswo, Veniamin Sidorov, Rubin Aliev, Marcella Woods, Franz Baudenbacher and Petra Baudenbacher were published in the Nov. 14 issue of Physical Review Letters.

Fibrillation is a series of rapid, disorganized contractions in the heart caused by multiple uncoordinated, self-generated electrochemical waves that prevent the heart from pumping blood, quickly causing death.

"In normal conditions, an electrochemical wave moves smoothly across the heart, like expanding ripples in a lake when you toss in a stone. This wave then triggers a smooth and orderly contraction of the muscle," Wikswo, the Gordon A. Cain University Professor and Director of the Vanderbilt Institute for Integrative Biosystems Research and Education, said. "In fibrillation, it is as if someone continually throws in lots of rocks at different spots in the lake. In the resulting confusion, no blood gets pumped."

The application of a strong electrical shock, either with paddles on the chest or with an implantable defibrillator, is the best way to stop fibrillation. Ideally, a defibrillation shock would stop all waves in the heart and prevent new waves from arising spontaneously.

"You want to use as low a voltage shock as possible to minimize tissue damage and, for implantable defibrillators, to save your batteries," Wikswo continued. "However, if the voltage is too low, fibrillation returns immediately and you have to try again. The puzzle is why."

Wikswo's study explores the possibility that some waves might not be fully extinguished by a low voltage defibrillation shock, or new waves might be created by the shock, causing defibrillation to fail. If these remaining or new waves were the difficult-to-detect damped propagating waves, they could propagate slowly within the heart wall, rather than slowly dying out as previously expected. This might cause the heart to return to fibrillation or another cardiac arrhythmia.

"Damped propagating waves are not generally well understood, largely because they are difficult to view and to study," Wikswo said. "It turns out cardiac tissue provides a beautiful example of these waves."

Although cardiac graded responses have been considered for some time, recent advances in high-speed imaging, data processing and numerical modeling are just now allowing their quantitative analysis as damped, propagating waves.

To study the damped waves, Wikswo's team initiated a wave with a strong stimulus that moved smoothly across the heart. They then created a damped wave with a weaker stimulus and sent it in the wake of the first.

"If you timed it just right you could find that the second wave would hesitate and then split in two," Wikswo continued. "One half would get smaller and slowly die, while the other half would sharply increase and eventually become a self-continuing wave on its own."

This second, self-continuing wave could be a cause of defibrillation failure.

"What surprised us is the ease with which we could create damped waves that hung around for 50 milliseconds, which is a long time when you are defibrillating the heart," Wikswo said.

The research, conducted by studying the rabbit heart, lays the foundation for future studies to determine if the waves created under experimental conditions also occur spontaneously following defibrillation.

Future studies based on this research will be conducted to better understand how to manage these waves, the effect of anti-arrhythmic drugs on them, and whether these findings could be used to improve the efficiency of cardiac defibrillators.

###

To download a copy of the study, visit: http://www.vanderbilt.edu/lsp/abstracts/1501-Sidorov-PRL-2003.htm


Story Source:

The above story is based on materials provided by Vanderbilt University. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "Little-studied Waves In The Heart May Be Cause Of Defibrillation Failure." ScienceDaily. ScienceDaily, 9 December 2003. <www.sciencedaily.com/releases/2003/12/031209075035.htm>.
Vanderbilt University. (2003, December 9). Little-studied Waves In The Heart May Be Cause Of Defibrillation Failure. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2003/12/031209075035.htm
Vanderbilt University. "Little-studied Waves In The Heart May Be Cause Of Defibrillation Failure." ScienceDaily. www.sciencedaily.com/releases/2003/12/031209075035.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins