Featured Research

from universities, journals, and other organizations

End Of The Line For Silicon Dioxide? Scientists Investigate New Materials For Even Smaller And More Efficient Transistors

Date:
January 1, 2004
Source:
Technische Universitaet Clausthal
Summary:
By means of computer simulations, scientists at the Technical Universities in Clausthal and Vienna are investigating new materials for even smaller and more efficient transistor generations.

By means of computer simulations, scientists at the Technical Universities in Clausthal and Vienna are investigating new materials for even smaller and more efficient transistor generations.

Vienna/Clausthal (TU). The smaller the transistors, the faster they can operate. As a result, faster and faster processors can also be designed. The function of a transistor requires the presence of a thin insulating layer, the gate oxide. In only a few years, the thickness of this layer will be only one fifty-thousandth of that of a human hair. With continuing use of silicon dioxide as gate oxide, however, further miniaturisation of transistors - and thus the manufacture of even faster chips - will no longer be possible in a few years. Scientists all over the world have been racking their brains for years over the problem of further miniaturising transistors. Although the solution sounds simple, its realisation is quite formidable: a new material must be found.

If silicon dioxide – generally known as window glass – has a thickness of only a few atomic layers, it loses its insulating property. A kind of short circuit thus occurs in the transistor. The required material must therefore allow the application of a layer which is thicker and thus acts as an insulator, but which otherwise behaves as though it were an ultra-thin layer of silicon dioxide. After all, the objective is to design and manufacture transistors which are even smaller and more efficient. Strontium titanate has hitherto proved to be the most promising candidate for the purpose. However, only the "recipe" was previously known, not the combined effects of the ingredients. This knowledge deficit was a barrier to continuing development to achieve the set objective. The team of researchers from Vienna and Clausthal has now succeeded for the first time in determining precisely these combined effects. By means of computer simulations, they can explain the process of forming the oxide layer and thus indicate how their electrical properties can be controlled.

The scientific results achieved by Clemens J. F๖rst, Karlheinz Schwarz – both at TU Vienna – as well as Christopher R. Ashman and Peter E. Bl๖chl at TU Clausthal have been published in the current issue of "Nature" (Nature 427, 53 (2004)). The article is entitled "The interface between silicon and a high -k oxide".

"Computer simulations shed some light into atomic dimensions, where one would otherwise be almost blind," explains Prof. Bl๖chl from TU Clausthal. By means of computer simulations, the team of researchers has succeeded in explaining, atom for atom, how a new gate oxide – that is, strontium titanate – can be applied to a silicon wafer. "One can imagine the composite of silicon and strontium titanate as two Lego building blocks positioned one over the other", says Clemens F๖rst from TU Vienna in explaining the essential result. The surfaces of solids exhibit a characteristic atomic and electronic pattern which is governed by the arrangement of the atoms. The charge pattern of the oxide layer, which is comparable with the plug-in pattern of a Lego building block, matches the pattern of the silicon surface saturated with strontium.

For the researchers in Vienna and Clausthal, the conclusions concerning the electrical properties are also promising for the future. The oxide acts as a barrier to electrons and can thus be compared with a dam which holds back water. The higher the barrier is, the better the insulating properties are. For the first time, the scientists have demonstrated that the height of the barrier can be decisively increased by chemical processes at the interface. The properties of the gate oxide can thus be adapted to satisfy technological requirements.

The research work has been performed within the scope of the International Research Consortium - Integration of very high-k dielectrics with silicon CMOS technology (INVEST). The project is supported by the 5th General Program for Technology of the Information Society (IST) of the European Commission.


Story Source:

The above story is based on materials provided by Technische Universitaet Clausthal. Note: Materials may be edited for content and length.


Cite This Page:

Technische Universitaet Clausthal. "End Of The Line For Silicon Dioxide? Scientists Investigate New Materials For Even Smaller And More Efficient Transistors." ScienceDaily. ScienceDaily, 1 January 2004. <www.sciencedaily.com/releases/2004/01/040101090920.htm>.
Technische Universitaet Clausthal. (2004, January 1). End Of The Line For Silicon Dioxide? Scientists Investigate New Materials For Even Smaller And More Efficient Transistors. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2004/01/040101090920.htm
Technische Universitaet Clausthal. "End Of The Line For Silicon Dioxide? Scientists Investigate New Materials For Even Smaller And More Efficient Transistors." ScienceDaily. www.sciencedaily.com/releases/2004/01/040101090920.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins