Featured Research

from universities, journals, and other organizations

How The Body Determines Where Organs Are Placed

Date:
January 9, 2004
Source:
Salk Institute
Summary:
A Salk Institute team of biologists, mathematicians, and physicists has uncovered a novel paradigm for cell communication that provides new insights into the complex question of how the body determines where organs are placed.

La Jolla, Calif. -- A Salk Institute team of biologists, mathematicians, and physicists has uncovered a novel paradigm for cell communication that provides new insights into the complex question of how the body determines where organs are placed.

The study focused on a fundamental question: how the body tells left from right. Although humans look fairly symmetric on the outside, their inner organs are placed quite asymmetrically; for example, the heart points to the left and the liver lies to the right side.

"We know that in the phase of development, there is a genetic cascade that leads to the proper placement of organs. If that cascade is disrupted, the results can lead to major problems or be fatal," said Salk Professor Juan Carlos Izpisúa Belmonte, who published the findings in the January 8 issue of Nature. Still, scientists did not have a clear understanding of what triggers the genetic cascade that defines organ placement. Izpisúa Belmonte's group focused on the activity of the Notch pathway, an important player during embryo development and also during tumorigenesis, and a key factor for proper left-right asymmetry, as the same group and others had learned earlier this year.

"We knew that Notch activity was necessary for the normal, left-sided expression, but we were clueless as to what was activating Notch preferentially on the left side," said Angel Raya, lead author of the paper. "We examined several factors known to participate early in the establishment of the left-right axis, but none was responsible for what we were seeing."

Izpisúa Belmonte and his team characterized a highly complex chain of events leading to Notch activation, and resorted to mathematics to model the dynamics of this process. The model allowed the team to perform thousands of experiments in the computer (simulations), and pinpoint the factors most likely to regulate Notch activity in the specific fashion seen in the embryo.

"The model pointed in the direction of extracellular calcium, and we were absolutely thrilled when we visualized that, indeed, extracellular calcium accumulated normally on the left side of the embryo. The mathematical model that we developed saved us years of bench work and led to new insights about a biological problem," said Izpisúa Belmonte. "We are very excited about this multidisciplinary approach to biology, and we believe that collaborative approaches between biologists, mathematicians, and physicists working together will lead to long-term breakthroughs in biological research."

###

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent, nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. The Institute was founded


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Cite This Page:

Salk Institute. "How The Body Determines Where Organs Are Placed." ScienceDaily. ScienceDaily, 9 January 2004. <www.sciencedaily.com/releases/2004/01/040109065110.htm>.
Salk Institute. (2004, January 9). How The Body Determines Where Organs Are Placed. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2004/01/040109065110.htm
Salk Institute. "How The Body Determines Where Organs Are Placed." ScienceDaily. www.sciencedaily.com/releases/2004/01/040109065110.htm (accessed September 3, 2014).

Share This



More Health & Medicine News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) — You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) — As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) — When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins