Featured Research

from universities, journals, and other organizations

Device Perfecting Tissue-Generated Blood Vessels

Date:
January 14, 2004
Source:
University Of Missouri-Columbia
Summary:
For many people, arteriosclerosis, the thickening and hardening of the walls of blood vessels, is a serious condition that, if not treated, can lead to massive heart attacks and strokes. A researcher at the University of Missouri-Columbia is working with Cytograft Tissue Engineering to create blood vessels directly from the patient’s tissue.

For many people, arteriosclerosis, the thickening and hardening of the walls of blood vessels, is a serious condition that, if not treated, can lead to massive heart attacks and strokes. Presently, surgical options, which include either vessel transplantation from the patient’s leg to the diseased vessels or implants from synthetic, cadaverous or animal tissue, are susceptible to weaknesses, infection and rejection. A researcher at the University of Missouri-Columbia is working with Cytograft Tissue Engineering to create blood vessels directly from the patient’s tissue.

Related Articles


The process involves removing a stamp-sized section of tissue from the patient’s arm. The cells from the tissue are grown and expanded into a sheet of cells in culture, and then rolled into the vessel. Since these biologically engineered vessels are made on an individual basis, monitoring their growth is crucial. Homogeneity, meaning structural similarity, and adequate thickness must be ensured, and there can be no weaknesses or deformities. A machine developed by Mark Haidekker, assistant professor of biological engineering, solves those potential problems for a fraction of the cost.

The machine, which involves a technique called optical transillumination tomography, examines the tissue using a laser beam and generates a 3D image of the tissue that can be analyzed on a computer. This allows Haidekker to test and examine the tissue in a non-invasive way for thickness, inhomogenity, density and possible defects.

Haidekker, who has been working on the machine for almost a year, says most current ways to examine tissue are not very effective and are too expensive to create. While an MRI machine costs $1.8 million to build, his device can perform the examinations for only $15,000 in material costs.

“This is a quality control device that will save lives,” Haidekker said. “This machine increases the success rate of the tissue-engineered blood vessels by picking out the rare, but crucial, vessels that may cause problems.”

Haidekker continues to make improvements on his device. Currently, he is working on creating the tissue image at a quicker rate. The process currently takes a few hours to complete, but Haidekker is acquiring the technology to improve the rate to only a few minutes.


Story Source:

The above story is based on materials provided by University Of Missouri-Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University Of Missouri-Columbia. "Device Perfecting Tissue-Generated Blood Vessels." ScienceDaily. ScienceDaily, 14 January 2004. <www.sciencedaily.com/releases/2004/01/040114075322.htm>.
University Of Missouri-Columbia. (2004, January 14). Device Perfecting Tissue-Generated Blood Vessels. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2004/01/040114075322.htm
University Of Missouri-Columbia. "Device Perfecting Tissue-Generated Blood Vessels." ScienceDaily. www.sciencedaily.com/releases/2004/01/040114075322.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins