Featured Research

from universities, journals, and other organizations

Device Perfecting Tissue-Generated Blood Vessels

Date:
January 14, 2004
Source:
University Of Missouri-Columbia
Summary:
For many people, arteriosclerosis, the thickening and hardening of the walls of blood vessels, is a serious condition that, if not treated, can lead to massive heart attacks and strokes. A researcher at the University of Missouri-Columbia is working with Cytograft Tissue Engineering to create blood vessels directly from the patient’s tissue.

For many people, arteriosclerosis, the thickening and hardening of the walls of blood vessels, is a serious condition that, if not treated, can lead to massive heart attacks and strokes. Presently, surgical options, which include either vessel transplantation from the patient’s leg to the diseased vessels or implants from synthetic, cadaverous or animal tissue, are susceptible to weaknesses, infection and rejection. A researcher at the University of Missouri-Columbia is working with Cytograft Tissue Engineering to create blood vessels directly from the patient’s tissue.

The process involves removing a stamp-sized section of tissue from the patient’s arm. The cells from the tissue are grown and expanded into a sheet of cells in culture, and then rolled into the vessel. Since these biologically engineered vessels are made on an individual basis, monitoring their growth is crucial. Homogeneity, meaning structural similarity, and adequate thickness must be ensured, and there can be no weaknesses or deformities. A machine developed by Mark Haidekker, assistant professor of biological engineering, solves those potential problems for a fraction of the cost.

The machine, which involves a technique called optical transillumination tomography, examines the tissue using a laser beam and generates a 3D image of the tissue that can be analyzed on a computer. This allows Haidekker to test and examine the tissue in a non-invasive way for thickness, inhomogenity, density and possible defects.

Haidekker, who has been working on the machine for almost a year, says most current ways to examine tissue are not very effective and are too expensive to create. While an MRI machine costs $1.8 million to build, his device can perform the examinations for only $15,000 in material costs.

“This is a quality control device that will save lives,” Haidekker said. “This machine increases the success rate of the tissue-engineered blood vessels by picking out the rare, but crucial, vessels that may cause problems.”

Haidekker continues to make improvements on his device. Currently, he is working on creating the tissue image at a quicker rate. The process currently takes a few hours to complete, but Haidekker is acquiring the technology to improve the rate to only a few minutes.


Story Source:

The above story is based on materials provided by University Of Missouri-Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University Of Missouri-Columbia. "Device Perfecting Tissue-Generated Blood Vessels." ScienceDaily. ScienceDaily, 14 January 2004. <www.sciencedaily.com/releases/2004/01/040114075322.htm>.
University Of Missouri-Columbia. (2004, January 14). Device Perfecting Tissue-Generated Blood Vessels. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2004/01/040114075322.htm
University Of Missouri-Columbia. "Device Perfecting Tissue-Generated Blood Vessels." ScienceDaily. www.sciencedaily.com/releases/2004/01/040114075322.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins