Featured Research

from universities, journals, and other organizations

New Algorithm Speeds Simulations Of Complex Fluids

Date:
January 26, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
As reported in the Jan. 23 issue of the journal Physical Review Letters, researchers at the University of Illinois at Urbana-Champaign have developed a geometric cluster algorithm that makes possible the fast and accurate simulation of complex fluids.

CHAMPAIGN, Ill. -- Computer simulations play an essential role in the study of complex fluids -- liquids that contain particles of different sizes. Such liquids have numerous applications, which depend on a fundamental understanding of their behavior. But the two main techniques for the atomistic simulation of liquids -- the molecular dynamics technique and the Monte Carlo method -- have limitations that greatly reduce their effectiveness.

As reported in the Jan. 23 issue of the journal Physical Review Letters, researchers at the University of Illinois at Urbana-Champaign have developed a geometric cluster algorithm that makes possible the fast and accurate simulation of complex fluids.

"The main advantage of the molecular dynamics method -- its ability to provide information about dynamical processes -- is also its main limitation," said Erik Luijten, a professor of materials science and engineering at Illinois. "Many complex fluids contain particles of widely different sizes, which move at vastly different time scales. A simulation that faithfully captures the motions of the faster as well as the slower particles would be impractically slow."

By contrast, the Monte Carlo method can circumvent the disparity in time scales, since it is designed to extract equilibrium properties without necessarily reproducing the actual physical motion of the atoms or molecules. However, attempts to create appropriate "artificial motion" have been limited to ad hoc solutions for specific situations. Thus, a Monte Carlo method capable of efficiently simulating systems containing particles of different sizes has remained a widely pursued goal.

Luijten and graduate student Jiwen Liu have resolved this issue in a very general way by creating artificial movements of entire clusters of particles. The identification of appropriate clusters is a crucial component of the simulation.

In 1987, researchers at Carnegie Mellon University resolved a similar problem for magnetic materials by simultaneously flipping entire groups (or clusters) of magnetic spins. This finding, which relied on an intricate mathematical mapping dating back to the early 1970s, greatly accelerated calculations for model magnets. Many researchers realized that a similar approach would have an even bigger impact if it could be applied to fluids.

"Thus, a cluster algorithm for the simulation of fluids became a 'Holy Grail' for scientists studying fluids by means of computer simulations," Luijten said. "However, magnetic materials possess a symmetry that is absent in fluids, making it apparently impossible to use the ideas that were so successful in magnets."

Exploiting an idea developed for mixtures of spheres, Luijten and Liu were able to reconcile the asymmetric nature of fluids with the mathematical foundations underlying the identification of clusters. Their simulation method utilizes a geometric cluster algorithm that identifies "natural" groups of particles on the basis of the elementary forces that act between the particles. This approach greatly accelerates the simulation of complex fluids. Indeed, the greater the disparity in size between particles, the more advantageous their method becomes.

"This algorithm provides us with a new tool to study fluids that were not previously accessible by simulations," Luijten said. "It has the potential to advance our understanding of a great variety of liquid systems."

The U.S. Department of Energy and the National Science Foundation funded the work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "New Algorithm Speeds Simulations Of Complex Fluids." ScienceDaily. ScienceDaily, 26 January 2004. <www.sciencedaily.com/releases/2004/01/040126072135.htm>.
University Of Illinois At Urbana-Champaign. (2004, January 26). New Algorithm Speeds Simulations Of Complex Fluids. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2004/01/040126072135.htm
University Of Illinois At Urbana-Champaign. "New Algorithm Speeds Simulations Of Complex Fluids." ScienceDaily. www.sciencedaily.com/releases/2004/01/040126072135.htm (accessed September 19, 2014).

Share This



More Matter & Energy News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins