Featured Research

from universities, journals, and other organizations

Counting Atoms That Aren't There, In Stars That No Longer Exist

Date:
January 30, 2004
Source:
Argonne National Laboratory
Summary:
Argonne scientists, in collaboration with colleagues at the University of Chicago, Washington University and the Universita di Torino in Italy, examined stardust from a meteorite and found remnants of now-extinct technetium atoms made in stars long ago.

Researchers at the U.S. Department of Energy's Argonne National Laboratory have reached for the stars – and seen what's inside.

Related Articles


Argonne scientists, in collaboration with colleagues at the University of Chicago, Washington University and the Universita di Torino in Italy, examined stardust from a meteorite and found remnants of now-extinct technetium atoms made in stars long ago.

The stardust grains are tiny bits of stars that lived and died before the solar system formed. Each grain is many times smaller than the width of a human hair, and carries a chemical record of nuclear reactions in its parent star.

Famed scientist P.W. Merrill fifty years ago observed the signature of live technetium - an element that has no stable isotopes - in the starlight from certain types of stars, thereby proving the then-controversial theory that stars make atoms via a process called nucleosynthesis. The researchers' discovery that their stardust grains once harbored live technetium brings the science of nucleosynthesis full circle.

"Finding traces of technetium decay products in stardust provides a very precise confirmation of the theories of how atoms are made inside stars," said Michael Savina, Argonne scientist and the lead author on the research, which is published today in Science. "The fact that we can both predict and measure very tiny effects in the chemistry of these grains gives us a lot of confidence in our models of how stars work."

Authors on the report, in addition to Savina, are Michael Pellin and C. Emil Tripa of Argonne, Andrew M. Davis and Roy S. Lewis of the University of Chicago, Sachiko Amari of Washington University in St. Louis, and Roberto Gallino of Universita di Torino in Italy. Funding was provided by the U.S. Department of Energy Office of Science, the University of Chicago, NASA, and the Italian FIRB Progetto Origine Astrofisica degli Elementi Pesanti Oltre il Ferro.

The work was made possible by a specialized instrument at Argonne called CHARISMA, the only instrument of its type in the world. "CHARISMA is designed to analyze very tiny samples – the kind where you can't afford to waste atoms, because there are so few of them to work with," Savina said.

CHARISMA is presently being upgraded, with funding from the Department of Energy Office of Science and from NASA, in anticipation of samples from the Genesis mission to collect samples of the solar wind – single atoms and electrically charged particles from the sun – which scientists believe hasn't changed since the sun was born.

The research group at Argonne will be among the scientists to analyze the samples in an effort to better understand how the planets formed. Current measurements of the sun's composition are not precise enough to answer key questions about events in the early solar system. The researchers are also preparing to analyze samples from the Stardust mission, which recently captured dust grains from a comet's tail and will bring them back to Earth in 2006.

###

The nation's first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America's scientific leadership and prepare the nation for the future. The University of Chicago operates Argonne as part of the U.S. Department of Energy's national laboratory system.


Story Source:

The above story is based on materials provided by Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Argonne National Laboratory. "Counting Atoms That Aren't There, In Stars That No Longer Exist." ScienceDaily. ScienceDaily, 30 January 2004. <www.sciencedaily.com/releases/2004/01/040130075555.htm>.
Argonne National Laboratory. (2004, January 30). Counting Atoms That Aren't There, In Stars That No Longer Exist. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2004/01/040130075555.htm
Argonne National Laboratory. "Counting Atoms That Aren't There, In Stars That No Longer Exist." ScienceDaily. www.sciencedaily.com/releases/2004/01/040130075555.htm (accessed October 24, 2014).

Share This



More Space & Time News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins