Featured Research

from universities, journals, and other organizations

Livermore Scientists Reveal Details Of Reactive States Of Water-to-air Interface

Date:
February 2, 2004
Source:
Lawrence Livermore National Laboratory
Summary:
Using the latest terascale ASCI computers, scientists at Lawrence Livermore National Laboratory have revealed details of the reactive states and faster relaxation of molecules at the water-to-air interface.

LIVERMORE, Calif. -- Using the latest terascale ASCI computers, scientists at Lawrence Livermore National Laboratory have revealed details of the reactive states and faster relaxation of molecules at the water-to-air interface.

Related Articles


Scientists Christopher Mundy and I-Feng Kuo created the first ab initio calculations of a stable aqueous liquid-vapor interface. The simulations serve as a robust predictive tool in the investigation of electronic properties of molecules at interfaces.

These complex theoretical models have captured surface phenomena of water that have recently been observed experimentally in the group of Professor Rich Saykally at UC-Berkeley. The results are presented in the January 30 edition of Science.

The researchers first stabilized a region of bulk water in the center of a water slab so they could quantify the reactive states and surface relaxation as the bulk water approached the liquid-vapor interface.

Data analysis shows that there is a faster relaxation of water molecules at the interface and the surface contains far more reactive states than the bulk.

"These simulations serve as an important step toward the use of terascale resources to produce simulations of water in complex environments," Mundy said. "The chemistry and physics of the aqueous liquid-vapor interface have been receiving recent attention because of new experimental techniques to characterize its structure."

The ab initio simulations of the aqueous liquid/vapor interface have a resolution of approximately 35 angstrom and contain a total of 216 water molecules.

Characterizing water at the liquid-to-air interface produces important results in atmospheric science. The Saykally group experiments on the aqueous liquid-vapor interface have provided additional proof of dangling oxygen-hydrogen bonds present at the surface, strong evidence for surface relaxation, and new structural portions in which both hydrogens are dangling.

The Livermore work seems to have captured all these surface events. Ab initio simulations present an unbiased representation of water in different environments and are ideal for explaining surface conditions.

###

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.


Story Source:

The above story is based on materials provided by Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Livermore National Laboratory. "Livermore Scientists Reveal Details Of Reactive States Of Water-to-air Interface." ScienceDaily. ScienceDaily, 2 February 2004. <www.sciencedaily.com/releases/2004/01/040130075659.htm>.
Lawrence Livermore National Laboratory. (2004, February 2). Livermore Scientists Reveal Details Of Reactive States Of Water-to-air Interface. ScienceDaily. Retrieved December 27, 2014 from www.sciencedaily.com/releases/2004/01/040130075659.htm
Lawrence Livermore National Laboratory. "Livermore Scientists Reveal Details Of Reactive States Of Water-to-air Interface." ScienceDaily. www.sciencedaily.com/releases/2004/01/040130075659.htm (accessed December 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Gifted Drones Are Already Causing Problems

Christmas Gifted Drones Are Already Causing Problems

Newsy (Dec. 25, 2014) — Commercial drones were a popular gift this Christmas, but flying one is harder than it looks, and the results can range from comical to catastrophic. Video provided by Newsy
Powered by NewsLook.com
NASA Cameras Capture Solar Flare

NASA Cameras Capture Solar Flare

Reuters - US Online Video (Dec. 25, 2014) — NASA cameras capture images of intense solar flare on the sun. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Ukrainian Coal Miners Work to Stave Off Electricity Shortage

Ukrainian Coal Miners Work to Stave Off Electricity Shortage

AFP (Dec. 24, 2014) — Coal miners in the separatist east of Ukraine work to ensure there won't be electricity shortages during the coldest months of winter, but the country has declared a state of emergency in its electricity market. Duration: 00:59 Video provided by AFP
Powered by NewsLook.com
Tech's Next Step: Social Change

Tech's Next Step: Social Change

Reuters - Business Video Online (Dec. 23, 2014) — Technology is constantly changing lives but 100 firms have done more than most. As Joel Flyn reports a malaria diagnosis app, do-it-yourself architecture and camera glasses have recently won awards for driving social change. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins