Featured Research

from universities, journals, and other organizations

Large Diamonds Made From Gas Are The Hardest Yet

Date:
February 26, 2004
Source:
Carnegie Institution
Summary:
Producing a material that is harder than natural diamond has been a goal of materials science for decades. Now a group headed by scientists at the Carnegie Institution's Geophysical Laboratory in Washington, D.C., has produced gem-sized diamonds that are harder than any other crystals.

This photograph shows a synthetic brilliant cut single-crystal diamond grown by chemical vapor deposition, CVD. About 2.5 mm high, this crystal was grown in about 1 day at Carnegie. The very bottom (table) of the crystal is a type 1b seed: hence the yellow tint which is due to internal reflection (the CVD diamond is transparent). [C.S. Yan et al., Physica Status Solidi (a) 201,R25 (2004)]. The researchers have also reported that these CVD diamonds are capable of easily generating ultrahigh pressures to at least 200 GPa. [W.L. Mao et al., Appl. Phys. Lett. 83, 5190 (2003)] (Image used with permission Physica Status Solidi http://www.pss-rapid.com) .

Washington, D.C. -- Producing a material that is harder than natural diamond has been a goal of materials science for decades. Now a group* headed by scientists at the Carnegie Institution's Geophysical Laboratory in Washington, D.C., has produced gem-sized diamonds that are harder than any other crystals. Further, the researchers grew these diamonds directly from a gas mixture at a rate that is up to 100 times faster than other methods used to date.

Related Articles


"We believe these results are major breakthroughs in our field," said Chih-shiue Yan, lead author of the study published in the February 20, online Physica Status Solidi. "Not only were the diamonds so hard that they broke the measuring equipment, we were able to grow gem-sized crystals in about a day."

The researches grew the crystals using a special high-growth rate chemical vapor deposition (CVD) process that they developed. They then subjected the crystals to high-pressure, high-temperature treatment to further harden the material. In the CVD process, hydrogen gas and methane are bombarded with charged particles, or plasma, in a chamber. The plasma prompts a complex chemical reaction that results in a "carbon rain" that falls on a seed crystal in the chamber. Once on the seed, the carbon atoms arrange themselves in the same crystalline structure as the seed. In this case, the seed was a type 1b synthetic diamond plate. They have grown single crystals of diamonds up to 10 millimeters across and up to 4.5 millimeters in thickness by this method.

The crystals produced by CVD are very tough. "We noticed this when we tried to polish them into brilliant cuts," said Yan. "They were much harder to polish than conventional diamond crystals produced at high pressure and high temperature." The researchers then subjected the tough CVD crystals to high-temperature and high-pressure conditions. The diamonds were heated to 2000 C and put under pressures between 50,000 and 70,000 times atmospheric pressure (5-7 GPa) for ten minutes. This final process resulted in the ultrahard material, which was at least 50% harder than the conventional diamonds as shown by direct measurements carried out in collaboration with scientists at Los Alamos National Laboratory.

"Making diamonds has not been the primary goal of our research," remarked Russell Hemley of Carnegie. "Our group is interested in the behavior of materials at extreme pressures and temperatures. We need large, perfect diamond crystals to create new classes of high-pressure devices for our research and decided to explore whether we could make these crystals by CVD processes. We found that we could, and at a very high growth rate. This has opened up an entirely new way of producing diamond crystals for a variety of applications, such as the next generation diamond-based electronics devices and cutting tools. Our new finding that the diamonds can be supertough and/or superhard was a surprise and will greatly benefit many of these applications."

Link to related papers http://cdac.ciw.edu/

*This research was supported by the National Science Foundation, the U.S. Department of Energy, the National Nuclear Security Agency, through the Carnegie/ DOE Alliances Center, CDAC, and the W. M. Keck Foundation. It was conducted in collaboration with researchers at the Phoenix Crystal Corporation and Los Alamos National Laboratory. The Carnegie Institution of Washington (http://www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Plant Biology and Global Ecology in Stanford, CA; The Observatories in Pasadena, CA, and Chile; Embryology, in Baltimore, MD; and the Department of Terrestrial Magnetism and the Geophysical Laboratory in Washington, DC.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Large Diamonds Made From Gas Are The Hardest Yet." ScienceDaily. ScienceDaily, 26 February 2004. <www.sciencedaily.com/releases/2004/02/040226070311.htm>.
Carnegie Institution. (2004, February 26). Large Diamonds Made From Gas Are The Hardest Yet. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2004/02/040226070311.htm
Carnegie Institution. "Large Diamonds Made From Gas Are The Hardest Yet." ScienceDaily. www.sciencedaily.com/releases/2004/02/040226070311.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

At Least 15 Injured in a California Natural Gas Pipeline Explosion

At Least 15 Injured in a California Natural Gas Pipeline Explosion

Reuters - US Online Video (Apr. 18, 2015) At least 15 injred after natural gas transmission line ruptures in Fresno, California. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins