Featured Research

from universities, journals, and other organizations

New Findings On Nerve Cell Proteins Show Promise For Reducing Disability

Date:
March 17, 2004
Source:
Wake Forest University Baptist Medical Center
Summary:
New findings in animals suggest a potential treatment to minimize disability after spinal cord and other nervous system injuries, say neuroscientists from Wake Forest University Baptist Medical Center.

WINSTON-SALEM, N.C. – New findings in animals suggest a potential treatment to minimize disability after spinal cord and other nervous system injuries, say neuroscientists from Wake Forest University Baptist Medical Center.

Related Articles


"Our approach is based on a natural mechanism cells have for protecting themselves, called the stress protein response," said Michael Tytell, Ph.D., a neuroscientist and the study's lead researcher. "We believe it has potential for preventing some of the disability that occurs as a result of nervous system trauma and disease."

The research showed that up to 50 percent of the motor and sensory nerve cell death could be prevented in mice with sciatic nerve injury. It is reported in the current issue of Cell Stress and Chaperones, a journal of stress biology and medicine.

"We are on our way to developing a treatment that is effective in preventing motor nerve cell death, which is significant to people because loss of motor neurons means paralysis," said Tytell, professor of neurobiology and anatomy at Wake Forest Baptist.

The goal of the work is to prevent or minimize the "secondary" cell death that occurs in the hours and days after a spinal cord or brain injury. During this period, cells surrounding the injury can become inflamed and die, a cascading response that worsens disability.

"There is a lot of cell death that takes place after the initial injury," said Tytell. "If you could prevent that, you would retain a lot more function."

Tytell's approach is to augment the stress protein response, in which cells produce proteins called Hsc70 and Hsp70 that help protect them from death when they are exposed to heat, injury or any other stresses that threaten their normal function.

"This is a way cells have of protecting themselves," he said. "If we can figure out a way to facilitate that response, we could potentially limit the amount of damage that is caused."

For the study, the researchers treated injured sciatic nerves in mice with Hsc70 and Hsp70. In mice treated with the proteins, cell death was reduced by up to 50 percent compared to mice that weren't treated.

Tytell said it is a novel idea that cells can be successfully treated with a protein that is ordinarily made inside the cells.

"We don't know whether the protein is functioning in the same way as when it's made in the cells," he said. "We're working to learn more about this effect. If we can understand it better, we'll know what form it should be in and what the doses should be to maximize the protective benefits."

Tytell and colleagues hope to use their knowledge about the proteins and how they work to develop drugs that could be used to treat injury. One idea is to develop a drug that would increase the production of the protective proteins.

Tytell said that over the years, there has been little progress in research on traumatic injury to the nervous system. One approach that is being studied is to replace the damaged cells with stem cells. However, there are technical problems getting the nerve "circuitry" to grow back to normal. He believes the idea of protecting cells from secondary cell death deserves additional research attention.

"That's a goal we could potentially reach more quickly than replacing cells that are lost," he said.

A long-range goal is to determine if the proteins could be useful in the treatment of degenerative diseases of the brain, such as Alzheimer's disease and Huntington's disease. The research was supported by a grant from the Muscular Dystrophy Association, a Wake Forest University School of Medicine Venture Grant, and a private donation.

Tytell and Wake Forest hold a U.S. Patent on the use of Hsc70 and Hsp70 to prevent the death of injured cells. The results in the report will contribute to his efforts and those of his co-author, Lucien J. Houenou, a former faculty member of Wake Forest University School of Medicine, to develop therapeutic agents based on the cellular stress response.


Story Source:

The above story is based on materials provided by Wake Forest University Baptist Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Wake Forest University Baptist Medical Center. "New Findings On Nerve Cell Proteins Show Promise For Reducing Disability." ScienceDaily. ScienceDaily, 17 March 2004. <www.sciencedaily.com/releases/2004/03/040317072648.htm>.
Wake Forest University Baptist Medical Center. (2004, March 17). New Findings On Nerve Cell Proteins Show Promise For Reducing Disability. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2004/03/040317072648.htm
Wake Forest University Baptist Medical Center. "New Findings On Nerve Cell Proteins Show Promise For Reducing Disability." ScienceDaily. www.sciencedaily.com/releases/2004/03/040317072648.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins