Featured Research

from universities, journals, and other organizations

New Software Developed At Rensselaer Predicts Promising Ingredients For New Drugs

Date:
April 5, 2004
Source:
Rensselaer Polytechnic Institute
Summary:
Researchers at Rensselaer Polytechnic Institute today announced the release of a software program capable of quickly identifying molecules that show promise for future medicines.

The DDASSL software can quickly screen large databases, accurately predicting the molecules that show potential for future medicines.
Credit: Image courtesy of Rensselaer Polytechnic Institute

TROY, N.Y. -- Researchers at Rensselaer Polytechnic Institute today announced the release of a software program capable of quickly identifying molecules that show promise for future medicines. The software program enables drug makers to comb through enormous databases of potential molecules and identify the ones that have sound medicinal properties.

Related Articles


Rensselaer researchers with skills in computer science, chemistry, and math allied to create the software program. Chemistry Professor Curt Breneman, Mathematics Associate Professor Kristin Bennett, and Decision Sciences and Engineering Systems Associate Professor Mark Embrechts collaborated in the Drug Discovery and Semi-Supervised Learning project (DDASSL, pronounced "dazzle"), supported by a $1.2 million Knowledge and Distributed Intelligence Award from the National Science Foundation.

"The trick with drug discovery is to have the drug molecule fit like a key in a lock, because shape affects its performance," Embrechts said. The safety and effectiveness of medicines depend on the shape and chemistry of the molecule. To find the most likely molecules, the new software makes use of two shortcuts in chemistry and math that enable the computer to search a vast molecular database rapidly.

The first shortcut describes the molecule, its shape and chemistry, in terms of numbers a computer can crunch rapidly. "Dr. Breneman has a technique to calculate electronic properties on the surface of a molecule very quickly," Embrechts said. "It produces a description--basically a set of numbers--that the computer can use easily."

Then, the second shortcut identifies which molecules have the right chemistry for a specific therapy. Using advanced pattern-recognition techniques known as kernel methods, the software analyzes a small sample database to identify molecules with the right chemical features. Once the key features are identified, the software can quickly screen large databases, accurately predicting the molecules that show potential.

"Conventional techniques are not truly predictive and don't work," Bennett said. "So we borrowed pattern recognition techniques already used in the pharmaceutical industry and added algorithms based on support vector machines. That gives us a technique to predict which molecules are promising."

Rensselaer researchers noted that predictive modeling is one of a new breed of drug discovery methods that marks a shift in industry practice--a shift away from cell-based assays performed in the lab toward math-based models calculated on the computer.

"Our program allows researchers to 'crash test' lots of molecules quickly and inexpensively," Breneman said. "That prevents a lot of false starts. The ultimate pay-off of this methodology may be that it can support the rapid invention of new drugs when diseases develop quickly and threaten society."

As drug makers increasingly target complex, chronic illness, drug development becomes far more costly and time consuming. Meanwhile, in the search for new drugs, 99.9 percent of compounds tested ultimately fail. Accordingly, drug makers want to be able to predict more accurately which compounds will produce the next blockbuster drug.

The Rensselaer research team will continue work to improve drug discovery methods, which will be carried out in the new Rensselaer Center for Biotechnology and Interdisciplinary Studies, a state-of-the-art facility scheduled to open in September 2004.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Cite This Page:

Rensselaer Polytechnic Institute. "New Software Developed At Rensselaer Predicts Promising Ingredients For New Drugs." ScienceDaily. ScienceDaily, 5 April 2004. <www.sciencedaily.com/releases/2004/04/040405091831.htm>.
Rensselaer Polytechnic Institute. (2004, April 5). New Software Developed At Rensselaer Predicts Promising Ingredients For New Drugs. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2004/04/040405091831.htm
Rensselaer Polytechnic Institute. "New Software Developed At Rensselaer Predicts Promising Ingredients For New Drugs." ScienceDaily. www.sciencedaily.com/releases/2004/04/040405091831.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins