Featured Research

from universities, journals, and other organizations

Glowing Microspheres Improve Fluorescence Measurements

Date:
April 13, 2004
Source:
National Institute Of Standards And Technology
Summary:
Laboratories that measure emissions from fluorescent particles in a wide range of applications from clinical chemistry to biodefense research to pharmaceutical development now can have more confidence in their results thanks to new theory, standards and methods developed by the National Institute of Standards and Technology (NIST).

Laboratories that measure emissions from fluorescent particles in a wide range of applications from clinical chemistry to biodefense research to pharmaceutical development now can have more confidence in their results thanks to new theory, standards and methods developed by the National Institute of Standards and Technology (NIST).

The culmination of five years of research, NIST's newest reference material (RM 8640) is a set of calibrated microspheres coated with fluorescent dye. The tiny spheres, each one about one-tenth the width of a human hair, are used to calibrate flow cytometry instruments that measure fluorescence intensity.

Fluorescent markers often are used to "tag" antibodies, cancer cells, specific genes or other biomolecules. For example, the brightness of the signal from a sample can indicate whether a disease is getting worse or is in remission. Until now, the intensity of the signal, reflecting numbers of target molecules, has been judged visually or with benchmarks developed by individual manufacturers. Previous research has shown that measurements of the same samples can vary by more than 100 percent depending on the instrument used and a variety of experimental conditions.

The new reference material, combined with previously developed NIST standards and measurement procedures, now will provide an authoritative national fluorescence measurement scale. Each kit contains six vials of microspheres that emit fluorescent light at six different intensity levels from zero to very bright. A flow cytometer is used to analyze the contents of all the vials and an unknown sample. By calibrating the cytometer to match the intensity values provided by NIST for the reference vials, the intensity of the unknown sample can be measured more accurately.

NIST's work has been supported in part by the Centers for Disease Control and Prevention, with supplies provided by the Food and Drug Administration, Becton Dickinson Biosciences, Molecular Probes, Inc., and Bangs Laboratory.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "Glowing Microspheres Improve Fluorescence Measurements." ScienceDaily. ScienceDaily, 13 April 2004. <www.sciencedaily.com/releases/2004/04/040412012959.htm>.
National Institute Of Standards And Technology. (2004, April 13). Glowing Microspheres Improve Fluorescence Measurements. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2004/04/040412012959.htm
National Institute Of Standards And Technology. "Glowing Microspheres Improve Fluorescence Measurements." ScienceDaily. www.sciencedaily.com/releases/2004/04/040412012959.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins