Featured Research

from universities, journals, and other organizations

Scientists Post A Lower Speed Limit For Magnetic Switching

Date:
April 26, 2004
Source:
Stanford Linear Accelerator Center
Summary:
An experiment at the Stanford Synchrotron Radiation Laboratory (SSRL) found that the ultimate speed of magnetic switching is at least 1,000 times slower than previously expected.

The picture shows the 2 mile long linear accelerator as the background and the experiment and results superimposed as a schematic. The schematic shows the magnetic field surrounding the beam and the magnetic pattern (which is of micrometre size) written into a sample by the beam.
Credit: Image courtesy Stanford Linear Accelerator Center

The speed of magnetic recording – a crucial factor in a computer’s power and multimedia capabilities – depends on how fast one can switch a magnet’s poles. An experiment at the Stanford Synchrotron Radiation Laboratory (SSRL) found that the ultimate speed of magnetic switching is at least 1,000 times slower than previously expected. The result, which appears in the April 22 issue of the journal Nature, has implications for future hard disk computer drive technologies.

In the push toward ever-faster magnetic recording, experts expected to find a physical limit, a threshold speed beyond which materials would respond chaotically. "If you had asked me a year ago, ‘How fast does one have to create a pulse that does not switch magnetization?’ my answer would have been one femtosecond (one thousandth of a trillionth of a second)," said Jo Stöhr, Deputy Director of SSRL. "Chaotic behavior was not expected in this experiment, which ran in the picosecond (trillionth-of-a-second) range."

The SSRL is a division of the Stanford Linear Accelerator Center (SLAC), a U.S. Department of Energy (DOE) research facility operated by Stanford University. The collaboration for the Nature paper was led by SSRL scientists Hans Christoph Siegmann and Professor Joachim Stöhr, and included researchers from Seagate Technology, the world’s largest manufacturer of hard disk computer drives.

"This is a fascinating experiment that has given completely new information on the limits of magnetic switching," said Raymond L. Orbach, director of the DOE Office of Science. "It is also a wonderful illustration of the value of very different disciplines working together: scientists from a synchrotron light source using a high energy physics linear accelerator to do an experiment on magnetism." Seagate’s Head of Media Research, Dieter Weller underlined, "This collaboration has evolved, over time, into a very fruitful exchange between academia and industry, Aligning ourselves with such high caliber people as Hans Christoph Siegmann and Jo Stöhr is a real feat for us."

In a computer hard drive, a writing head hovers over a disk that’s rapidly spinning – at up to 15,000 rotations per minute, or 150 times faster than a CD player. An electric current running in the head creates a magnetic field, which records data by turning tiny areas of the disk’s surface into microscopic magnets. The disk is coated with a special, grainy material that allows only two, opposite directions of the magnetization, representing the 0 or 1 of a basic unit of data, or bit. High recording speed requires the coating material to respond and switch its poles quickly enough to record each bit reliably.

The experiment relied on the unique capabilities of SLAC’s 2-mile-long linear accelerator (linac). The beam of electrons produced by the linac played the role of the electric current in a hard drive’s writing head, based on the fact that moving electrons carry along a magnetic field that swirls around the electrons’ path. The idea came to Siegmann in the mid-1990’s, literally out of a lightning bolt: He realized that the linac could magnetically record the same way that a lightning leaves a magnetic signature when it strikes a rock.

The linac’s beam, made of tightly packed bunches of electrons traveling close to light speed, creates magnetic pulses that are some of the world’s strongest – at up to 10 Tesla, or 200,000 times the strength of the Earth’s magnetic field – and briefest, at 2 picoseconds (2 trillionths of a second).

The researchers shot up to seven electron bunches in a row through samples of magnetic recording media. In the photographs of the results, they expected to see dark and light areas, neatly arranged in concentric rings around the focus point of the beam. The two colors would correspond to grains magnetized in either of the two possible directions. Instead, the pictures showed all shades of grey, indicating that some grains had switched while others had not.

They observed similar results with different types of magnetic grains, or even with a continuous magnetic film. With the help of theoretical physicist Alexander Kashuba of the Landau Institute for Theoretical Physics in Moscow, the SSRL researchers realized that their data bore the signature of a chaotic system – one whose parts behave in a random, unpredictable way. "That’s the new thing," said Siegmann. "It’s like roulette. You can’t tell in advance whether it will be dark or light."

The challenge now will be to understand why the maximum speed seems to be at least 1,000 times lower than expected. The explanation, Siegmann said, could lie in the way thermal motion interacts with the magnetization process.

The limit on recording speed must be somewhere between 100 billion and a trillion bits per second, but is unlikely to ever affect technology, says Seagate’s Weller. State-of-the-art drives can now record about 1 billion bits per second, and long before that speed can be increased 100-fold, other physical constraints will get in the way, he says. In particular, higher speed requires smaller magnetic grains, but their size cannot go below the size of atoms.

The SSRL result could be an important step toward understanding the basic physics of data recording, leading to the development of entirely new technologies. A promising idea, Weller says, is heat-assisted recording, where a small section of the recording medium is temporarily brought to a high temperature, to speed up its magnetization reversal.

With the help of SLAC’s new Linac Coherent Light Source (LCLS), scheduled to start operating in 2008, researchers will be able to gain a solid understanding of the magnetic properties of matter. The LCLS will use the linac’s electron beam to produce laser-like X-ray pulses lasting just one femtosecond, enabling researchers to take snapshots of the magnetization process. "We will take images observing not only what has happened," said Stöhr. "We will be able to see those processes while they happen."

The DOE Office of Sciences both supported the research and funds the operation of the national user facilities at SLAC.


Story Source:

The above story is based on materials provided by Stanford Linear Accelerator Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford Linear Accelerator Center. "Scientists Post A Lower Speed Limit For Magnetic Switching." ScienceDaily. ScienceDaily, 26 April 2004. <www.sciencedaily.com/releases/2004/04/040426054807.htm>.
Stanford Linear Accelerator Center. (2004, April 26). Scientists Post A Lower Speed Limit For Magnetic Switching. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2004/04/040426054807.htm
Stanford Linear Accelerator Center. "Scientists Post A Lower Speed Limit For Magnetic Switching." ScienceDaily. www.sciencedaily.com/releases/2004/04/040426054807.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins