Featured Research

from universities, journals, and other organizations

Mechanism Found That May Protect Kidneys In Early Stages Of Diabetes

Date:
May 14, 2004
Source:
Northwestern University
Summary:
A group of Northwestern University researchers has identified what they believe is a built-in biological mechanism that prevents kidney damage in the early stages of diabetes associated with obesity.

A group of Northwestern University researchers has identified what they believe is a built-in biological mechanism that prevents kidney damage in the early stages of diabetes associated with obesity.

Related Articles


Their study was led by Daniel Batlle, M.D., Earle, del Greco, Levin Professor of Nephrology and professor of medicine at Northwestern University Feinberg School of Medicine, and was published in the May issue of the journal Hypertension.

Batlle and colleagues assessed the activity of two enzymes, ACE (for angiotensin-converting enzyme) and ACE2, which play an important role in the control of blood pressure, in the kidneys of a young mouse model of obesity and diabetes. The mouse, called db/db, develops type 2, insulin-resistant diabetes and obesity at around four to seven weeks after birth and eventually manifests some, but not all, features of human diabetic nephropathy.

In eight-week old db/db mice, which were obese and had high levels of blood glucose but no evidence of diabetes-related kidney disease, the researchers found low levels of a substance known as ACE (for angiotensin-converting enzyme) and increased levels of a related enzyme, ACE2.

The significance of a reduction in ACE coupled with increased ACE2 production in the kidneys needs to be clarified, said Minghao Ye, research associate in medicine at the Feinberg School and first author on the study.

ACE is required for production of angiotensin II (AngII), which, among its actions, causes blood vessel constriction and sodium and water retention by the kidney, leading to hypertension and kidney damage.

ACE inhibitors, which block production of AngII, are commonly used to treat high blood pressure and heart failure, as well as to improve survival after a heart attack and slow progression of kidney disease in individuals with diabetes.

ACE2, which was recently discovered, prevents accumulation of AngII while promoting formation of another substance called Ang(1-7), which dilates blood vessels and helps eliminate excess water and sodium from the kidneys. ACE inhibitors do not block ACE2 production.

"Since AngII over-production is thought to play a pivotal role in the progression of diabetic nephropathy, we suggest that decreased renal ACE activity coupled with increased renal ACE2 expression may be protective for the kidneys in the early phases of diabetes by limiting the renal accumulation of AngII and possibly by favoring Ang(1-7) formation, as well," Batlle said.

Interestingly, the finding of a decrease in ACE activity and an increase in ACE2 expression in the young mouse model, is similar to a pattern seen after administering a kidney-protecting drug and ACE inhibitor called ramipril to diabetic rats, Batlle said.

Batlle said that an increased ACE2 level in the kidneys in early diabetes does not exclude the possibility of an ACE2 reduction later, during the course of the disease as kidney damage develops. He believes it is possible that with time decreased ACE2 expression with an increase in ACE may foster damage in diabetes.

"The significance of a reduction in ACE coupled with increased ACE2 production in the "kidneys needs to be further studied but there is every reason to believe that it can only be beneficial," Batlle said.

"We know that giving ACE inhibitors can protect against kidney disease, but we need to learn more about ACE2 in diabetes, obesity and hypertension," he said.

Kidney disease is among the most common complications of diabetes, affecting over 20 percent of the 17 million diabetic patients in the United States.

In addition to Ye, Batlle's co-researchers on the study were Jan Wysocki, Parveen Naaz, Mohammad Reza Salabat and Michael S. LaPointe of the Feinberg School.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Mechanism Found That May Protect Kidneys In Early Stages Of Diabetes." ScienceDaily. ScienceDaily, 14 May 2004. <www.sciencedaily.com/releases/2004/05/040514031141.htm>.
Northwestern University. (2004, May 14). Mechanism Found That May Protect Kidneys In Early Stages Of Diabetes. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2004/05/040514031141.htm
Northwestern University. "Mechanism Found That May Protect Kidneys In Early Stages Of Diabetes." ScienceDaily. www.sciencedaily.com/releases/2004/05/040514031141.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins