Featured Research

from universities, journals, and other organizations

NCAR Instrument Gets Breakthrough View Of Sun's Magnetic Halo

Date:
June 3, 2004
Source:
National Center For Atmospheric Research
Summary:
A new instrument developed at the National Center for Atmospheric Research (NCAR) has captured landmark imagery of fast-evolving magnetic structures in the solar atmosphere.

These images show the brightness, magnetic field strength, and Doppler velocity of an erupting solar prominence taken with the Coronal Multi-Channel Polarimeter on March 9, 2004. The images were taken in a wavelength region in the near-Infrared spectrum corresponding to emission from Helium atoms. Positive and negative polarities of magnetic fields are indicated by the yellow and white colors of the middle image, while velocities directed towards and away from the observer are indicated by the blue and red colors of the rightmost figure.
Credit: Image courtesy National Center For Atmospheric Research

BOULDER -- A new instrument developed at the National Center for Atmospheric Research (NCAR) has captured landmark imagery of fast-evolving magnetic structures in the solar atmosphere. Steven Tomczyk (NCAR High Altitude Observatory) presented the images on Monday, May 31, at the annual meeting of the American Astronomical Society (AAS) in Denver.

Animations from the coronal multichannel polarimeter, or CoMP, reveal turbulent, high-velocity magnetic features spewing outward from the Sun's surface. A sample animation can be viewed at the Web site below. The National Science Foundation, NCAR's primary sponsor, is providing funding for the instrument.

CoMP is expected to provide the best data to date on magnetic structures in the solar corona, the extremely hot halo around the Sun that becomes visible during eclipses. "People have measured coronal magnetism before," says Tomczyk, "but we believe this is the first time it's being done in a time sequence like this, where you can see an evolving structure. I think we're making important steps and demonstrating that this technology works.

Data from CoMP will help solar physicists relate magnetism in the corona to features emerging from the Sun, such as prominences and coronal mass ejections. Such features are the sources of "space weather," the solar storms that can disable electric grids and satellites and interfere with radio communications.

"CoMP will deliver measurable benefits to the nation and the global space physics community," says Paul Bellaire, program director for NSF's solar terrestrial research. "Space weather forecasters around the world provide tailored information to managers and policy makers responsible for the high tech infrastructure supporting our orbiting and Earth-based telecommunications, navigation, and power grid systems. CoMP's solar corona imaging capability will be a valuable tool for these forecasters, as well as for researchers of the near-Earth space environment, since the Sun is the driving force behind all space weather." The CoMP data being presented at the AAS meeting were collected during tests in January and March at the National Solar Observatory in Sunspot, New Mexico. Further tests are being conducted this month.

CoMP uses a telescope with a lens roughly eight inches wide to gather and analyze light from the corona, which is much dimmer than the Sun itself. It tracks magnetic activity around the entire edge of the Sun, covering much more area than previous instruments. It also collects data far more often than its predecessors--as frequently as a measurement every 15 seconds.

Closer to the Sun's surface, magnetism has been traced for over a decade by ground- and space-based instruments. These devices infer the magnetic field by measuring several components of visible radiation. Until recently, though, there was little hope of using this technique to analyze magnetism in the Sun's corona. Although the corona's temperatures are scorching (as high as 1.8 million degrees Fahrenheit, or 1.0 million degrees Celsius), the corona itself is far too thin to yield a strong signal. However, a new generation of super-sensitive, low-noise infrared sensors made CoMP possible.

The NCAR team also devised a way to take images in two wavelengths of light at the same time. This allows scientists to filter out light scattered by Earth's atmosphere into the telescope's field of vision while preserving the faint signal from the corona. CoMP's developers hope to pair the instrument with a larger telescope. "Ultimately you want to gather more light," says Tomczyk. "This would give us more detail and allow us to gather data faster, so that both the temporal and spatial resolution could be improved."


Story Source:

The above story is based on materials provided by National Center For Atmospheric Research. Note: Materials may be edited for content and length.


Cite This Page:

National Center For Atmospheric Research. "NCAR Instrument Gets Breakthrough View Of Sun's Magnetic Halo." ScienceDaily. ScienceDaily, 3 June 2004. <www.sciencedaily.com/releases/2004/05/040531211912.htm>.
National Center For Atmospheric Research. (2004, June 3). NCAR Instrument Gets Breakthrough View Of Sun's Magnetic Halo. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2004/05/040531211912.htm
National Center For Atmospheric Research. "NCAR Instrument Gets Breakthrough View Of Sun's Magnetic Halo." ScienceDaily. www.sciencedaily.com/releases/2004/05/040531211912.htm (accessed September 18, 2014).

Share This



More Space & Time News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boeing, SpaceX to Send Astronauts to Space Station

Boeing, SpaceX to Send Astronauts to Space Station

AFP (Sep. 17, 2014) — NASA selected Boeing and SpaceX on Tuesday to build America's next spacecraft to carry astronauts to the International Space Station (ISS) by 2017, opening the way to a new chapter in human spaceflight. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
NASA Picks Boeing and SpaceX to Ferry Astronauts

NASA Picks Boeing and SpaceX to Ferry Astronauts

AP (Sep. 16, 2014) — NASA is a giant step closer to launching Americans again from U.S. soil. It has announced it has picked Boeing and SpaceX to transport astronauts to the International Space Station in the next few years. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins