Featured Research

from universities, journals, and other organizations

New Thermodynamic Theory Will Help Engineers 'Go With The Flow'

Date:
June 21, 2004
Source:
Duke University
Summary:
A scientific paper that provides tools based on a new principle of thermodynamics, called "Constructal Law," may enable the designers of automobiles, jet planes, air conditioners and other devices to take a more scientific approach to a development process now based on trial and error.

DURHAM, N.C. – A scientific paper that provides tools based on a new principle of thermodynamics, called "Constructal Law," may enable the designers of automobiles, jet planes, air conditioners and other devices to take a more scientific approach to a development process now based on trial and error.

Basically, Constructal Law provides such designers a method to minimize the resistance of flow throughout a system -- whether ocean currents or an air conditioner -- in an integrated way. A key advantage of Constructal Law, said its developers, is that it enables designers to systematically balance flow resistances in a complex system to arrive at the most efficient design.

European researchers already have begun applying Constructal Law in designs for heat exchangers, urban heating distribution networks and electronics cooling systems. Other researchers are applying the principle to explain natural processes such as the shape of animals or the circulation of ocean currents or atmospheric winds.

The latest developments of Constructal Law were described in an article in the July 2004 issue of the International Journal of Heat and Mass Transfer by the law's principal developer, Adrian Bejan, a thermodynamics expert and mechanical engineering professor at Duke's Pratt School of Engineering, and Sylvie Lorente, a civil engineering professor from the Laboratory of Materials and Durability of Constructions at the National Institute of Applied Sciences in Toulouse, France.

The article provides analytical and graphical tools for applying Constructal Law to better explain how air, water and other substances flow through designs ranging from animals to machines.

The two researchers said Constructal Law could improve design throughout engineering and enhance scientific understanding of basic natural processes involving flow. "Constructal Law provides designers with a sense of reference, helping them to understand the efficiency performance limits," said Bejan. "A decision to change the design to make it more efficient then becomes an informed decision about resources and money. Constructal Law is a mental vision of the origin and evolution of design. Design includes configuration, architecture, geometry, and drawings," he said.

"Resistances cannot be minimized individually and indiscriminately, because of constraints: space is limited, streams must connect components, and components must fit inside the greater system," said Bejan. "Resistances compete against each other. The route to improvements in global performance is by balancing the reductions in the competing resistances."

The idea that flow systems need to decrease flow resistance to improve performance seems intuitively obvious, but has not been effectively incorporated into the design process, according to Bejan. Traditionally, engineers measure a machine's input and output to calculate its overall efficiency, he said. If the machine is not efficient enough, a designer typically goes back to the drawing board to create a different design, an approach that provides inadequate insight into how to actually improve the machine.

"Design today is still largely an artistic endeavor, with designers literally starting with a blank page and the burden of choosing from infinite possibilities for structuring their machine," said Bejan. "Constructal Law's contribution is that it drives home the universality of flow access maximization, and makes it possible to use that information to deduce and improve engineering design." The theory's ability to explain both natural and engineered systems supports its validity, he said.

In their new paper, Bejan and Lorente provide graphical tools to help researchers apply Constructal Law principles to analyze a system's configuration and performance. Designs are characterized by performance and configuration. The freedom to change the configuration is good for enhancing performance. The most efficient systems balance the global objectives of the flow system with the global restrictions of the system's environment, which the authors call an "optimal distribution of imperfection."

According to Bejan, Constructal Law also reveals the limits on the efficiency of a system, revealing the point of diminishing returns beyond which additional changes to the system's design will not improve performance significantly.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "New Thermodynamic Theory Will Help Engineers 'Go With The Flow'." ScienceDaily. ScienceDaily, 21 June 2004. <www.sciencedaily.com/releases/2004/06/040621071446.htm>.
Duke University. (2004, June 21). New Thermodynamic Theory Will Help Engineers 'Go With The Flow'. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2004/06/040621071446.htm
Duke University. "New Thermodynamic Theory Will Help Engineers 'Go With The Flow'." ScienceDaily. www.sciencedaily.com/releases/2004/06/040621071446.htm (accessed August 28, 2014).

Share This




More Matter & Energy News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins