Featured Research

from universities, journals, and other organizations

Measuring Blood Sugar With A Wave Of The Arm

Date:
June 29, 2004
Source:
American Chemical Society
Summary:
People with diabetes could soon be waving goodbye to the pain and hassle of needles, thanks to a new under-skin sensor that monitors blood sugar levels with a simple wave of the arm.

People with diabetes could soon be waving goodbye to the pain and hassle of needles, thanks to a new under-skin sensor that monitors blood sugar levels with a simple wave of the arm.

The sensor, which is smaller than a dime and paper thin, is based on the same theory behind plastic security tags used in stores to prevent shoplifting. The device, which will be described in the July 15 edition of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world's largest scientific society, also shows promise for monitoring environmental toxins and terrorism agents like ricin.

"The vision of our work is a passive sensor of virtually unlimited lifetime that could be placed in the tissue of the skin," says Craig Grimes, Ph.D., a professor of electrical engineering at Penn State University and lead author of the paper.

Designed as an inexpensive device to continually monitor the blood glucose levels of people with diabetes, the passive sensor requires no internal power supply and no connections outside the body, according to Grimes and his associates. "Whenever a reading is needed, a person can wave their hand or arm in front of a reader that will automatically detect the sensor," Grimes says.

The sensor is based on "magnetoelastic" technology, just like the plastic security tags on store merchandise, which are sensed wirelessly as they pass through an exit.

"The cost of these anti-theft markers is a penny," Grimes says. "We've leveraged off that same premise, so the material cost associated with the sensors is effectively zero." The electronics used in the reader, which is about the size of a wristwatch, cost approximately $50, the researcher estimates.

"Magnetoelastic sensors can be considered the magnetic analog of an acoustic bell," Grimes explains. "If you hit a bell with a hammer, the bell rings at a characteristic frequency. If you coat the bell with a layer of paint, the frequency changes." Likewise, the molecules in a magnetoelastic sensor vibrate in the presence of a magnetic field, and the frequency varies with different chemical coatings.

Grimes' glucose sensor is coated with a polymer that responds to changes in acidity, and then coated with the chemical glucose oxidase. The glucose oxidase reacts with blood glucose to produce an acid, which causes the polymer to swell and changes the frequency of the sensor. The reader then interprets these changes as blood glucose levels.

"Generally speaking, we can monitor a sensor that's 6 millimeters long from about 6 inches away," Grimes says.

Grimes is working toward developing sensors that detect multiple chemicals at the same time. To achieve this, he fabricates a tree of sensors of varying lengths (and therefore varying frequencies) attached to a central "I-beam." The sensors are all coated with a different chemical, resulting in a harp-like platform about a quarter-inch high for a 10-chemical sensor.

"There's a large variety of biological things, from protein toxins to pathogens, that we're interested in detecting," Grimes says. "We've basically been working our way through a shopping list of these." So far, he and his colleagues have developed systems for monitoring E. coli and Staphylococcal enterotoxin B — two causes of foodborne illness — as well as the terrorism agent ricin.

Grimes is not yet partnering with a developer to commercialize the glucose sensor, but he expects that the system could go straight into animal testing after a minimum of "tweaking." "We've been developing the technology for years now on a real shoestring budget," he says. "If somebody came along and said, 'Let's do it,' it could be a very quick process."


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Measuring Blood Sugar With A Wave Of The Arm." ScienceDaily. ScienceDaily, 29 June 2004. <www.sciencedaily.com/releases/2004/06/040629014032.htm>.
American Chemical Society. (2004, June 29). Measuring Blood Sugar With A Wave Of The Arm. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2004/06/040629014032.htm
American Chemical Society. "Measuring Blood Sugar With A Wave Of The Arm." ScienceDaily. www.sciencedaily.com/releases/2004/06/040629014032.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins