Featured Research

from universities, journals, and other organizations

Chandra Looks Over A Cosmic Four-leaf Clover

Date:
July 13, 2004
Source:
NASA/Marshall Space Flight Center
Summary:
NASA’s Chandra X-ray Observatory has uncovered evidence that a single star in a foreground galaxy may have magnified X-rays coming from a rare quadruple quasar. About 11 billion light years from Earth, the Cloverleaf quasar is a single object that appears as four images.

The Cloverleaf quasar is a single object whose image has been reproduced four times in a cloverleaf-like arrangement through a process known as gravitational lensing. The gravitational field of one or more foreground galaxies has bent and magnified the light from the quasar to produce the multiple images. The foreground galaxies are too faint to be seen in these images.
Credit: Image NASA/CXC/Penn State/G. Chartas et al.

A careful analysis of observations by NASA's Chandra X-ray Observatory of a rare quadruple quasar has uncovered evidence that possibly a single star in a foreground galaxy magnified X-rays coming from the quasar. This discovery gives astronomers a new and extremely precise probe of the gas flow around the supermassive black hole that powers the quasar.

"If our interpretation is correct, then we are seeing details around this black hole that are 50,000 times smaller than either the Hubble Space Telescope or Chandra could see under ordinary circumstances," said George Chartas of Penn State University in University Park, and lead author of a recent article on the Cloverleaf quasar in The Astrophysical Journal.

The Cloverleaf quasar is a single object about 11 billion light years from Earth that appears as four images produced by a process known as gravitational lensing. If one or more galaxies lie along the line of sight to a more distant quasar, the gravitational field of the intervening galaxies can bend and magnify the light from the quasar and produce multiple images of it. The four images of the Cloverleaf quasar have been produced by one or more intervening galaxies.

One of the images (A), in the Cloverleaf is brighter than the others in both optical and X-ray light. Chartas and his colleagues found the relative brightness of this image was greater in X-ray than in optical light. The X-rays from iron atoms were also enhanced relative to X-rays at lower energies. Since the amount of brightening due to gravitational lensing does not vary with the wavelength, this means that an additional object has magnified the X-rays.

The increased magnification of the X-ray light can be explained by gravitational microlensing, an effect which has been used to search for compact stars and planets in our galaxy. Microlensing occurs when a star or a multiple star system passes in front of light from a background object.

If a single star or a multiple star system in one of the foreground galaxies passed in front of the light path for the brightest image, then that image would be selectively magnified. The X-rays would be magnified much more than the visible light, if they came from a smaller region around the black hole than the visible light. The enhancement of the X-rays from iron ions would be due to this same effect.

The analysis indicates that the X-rays are coming from a very small region, about the size of the solar system, around the supermassive black hole. The visible light is coming from a region ten or more times larger. The angular size of these regions at a distance of 11 billion light years is tens of thousands times smaller than the smallest region that can be resolved by the Hubble Space Telescope.

"The significance of the detection of microlensed X-rays from the Cloverleaf quasar lies in the extremely small region that is enhanced by the microlens," said Chartas. "This gives us the ability to make strong tests of models for the flow of gas around a supermassive black hole."

Other team members include Michael Eracleous (Penn State), Eric Agol (University of Washington), and Sarah Gallagher (UCLA). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Additional information and images are available at:

http://chandra.harvard.edu/andhttp://chandra.nasa.gov/


Story Source:

The above story is based on materials provided by NASA/Marshall Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Marshall Space Flight Center. "Chandra Looks Over A Cosmic Four-leaf Clover." ScienceDaily. ScienceDaily, 13 July 2004. <www.sciencedaily.com/releases/2004/07/040713083542.htm>.
NASA/Marshall Space Flight Center. (2004, July 13). Chandra Looks Over A Cosmic Four-leaf Clover. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2004/07/040713083542.htm
NASA/Marshall Space Flight Center. "Chandra Looks Over A Cosmic Four-leaf Clover." ScienceDaily. www.sciencedaily.com/releases/2004/07/040713083542.htm (accessed September 17, 2014).

Share This



More Space & Time News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boeing, SpaceX to Send Astronauts to Space Station

Boeing, SpaceX to Send Astronauts to Space Station

AFP (Sep. 17, 2014) — NASA selected Boeing and SpaceX on Tuesday to build America's next spacecraft to carry astronauts to the International Space Station (ISS) by 2017, opening the way to a new chapter in human spaceflight. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
NASA Picks Boeing and SpaceX to Ferry Astronauts

NASA Picks Boeing and SpaceX to Ferry Astronauts

AP (Sep. 16, 2014) — NASA is a giant step closer to launching Americans again from U.S. soil. It has announced it has picked Boeing and SpaceX to transport astronauts to the International Space Station in the next few years. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins