Featured Research

from universities, journals, and other organizations

Los Alamos Computers Probe How Giant Planets Formed

Date:
July 14, 2004
Source:
Los Alamos National Laboratory
Summary:
Nearly five billion years ago, the giant gaseous planets Jupiter and Saturn formed, apparently in radically different ways. So says a scientist at the Laboratory who created exhaustive computer models based on experiments in which the element hydrogen was shocked to pressures nearly as great as those found inside the two planets.

Nearly five billion years ago, the giant gaseous planets Jupiter and Saturn formed, apparently in radically different ways. So says a scientist at the Laboratory who created exhaustive computer models based on experiments in which the element hydrogen was shocked to pressures nearly as great as those found inside the two planets.

Related Articles


Working with a French colleague, Didier Saumon of Material Science (X-7) created models establishing that heavy elements are concentrated in Saturn's massive core, while those same elements are mixed throughout Jupiter, with very little or no central core at all. The study, published in this week's Astrophysical Journal, showed that refractory elements such as iron, silicon, carbon, nitrogen and oxygen are concentrated in Saturn's core, but are diffused in Jupiter, leading to a hypothesis that they were formed through different processes.

Saumon collected data from several recent shock compression experiments that have showed how hydrogen behaves at pressures a million times greater than atmospheric pressure, approaching those present in the gas giants. These experiments- performed over the past several years at U.S. national labs and in Russia- have for the first time permitted accurate measurements of the so-called equation of state of simple fluids, such as hydrogen, within the high-pressure and high-density realm where ionization occurs for deuterium, the isotope made of a hydrogen atom with an additional neutron.

Working with T. Guillot of the Observatoire de la Cote d'Azur, France, Saumon developed about 50,000 different models of the internal structures of the two giant gaseous planets that included every possible variation permitted by astrophysical observations and laboratory experiments.

"Some data from earlier planetary probes gave us indirect information about what takes place inside Saturn and Jupiter, and now we're hoping to learn more from the Cassini mission that just arrived in Saturn's orbit," Saumon said. "We selected only the computer models that fit the planetary observations."

Jupiter, Saturn and the other giant planets are made up of gases, like the sun. The two planets are about 70 percent hydrogen by mass, with the rest mostly helium and small amounts of heavier elements. Therefore, their interior structures were hard to calculate because hydrogen's equation of state at high pressures wasn't well understood.

Saumon and Guillot constrained their computer models with data from the deuterium experiments, thereby reducing previous uncertainties for the equation of state of hydrogen, which is the central ingredient needed to improve models of the structures of the planets and how they formed.

"We tried to include every possible variation that might be allowed by the experimental data on shock compression of deuterium," Saumon explained.

By estimating the total amount of the heavy elements and their distribution inside Jupiter and Saturn, the models provide a better picture of how the planets formed through the accretion of hydrogen, helium and solid elements from the nebula that swirled around the sun billions of years ago.

"There's been general agreement that the cores of Saturn and Jupiter are different," Saumon said. "What's new here is how exhaustive these models are. We've managed to eliminate or quantify many of the uncertainties, so we have much better confidence in the range within which the actual data will fall for hydrogen, and therefore for the refractory metals and other elements.

"Although we can't say our models are precise, we know quite well how imprecise they are," he added.

These results from the models will help guide measurements to be taken by Cassini and future proposed interplanetary space probes to Jupiter.


Story Source:

The above story is based on materials provided by Los Alamos National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Los Alamos National Laboratory. "Los Alamos Computers Probe How Giant Planets Formed." ScienceDaily. ScienceDaily, 14 July 2004. <www.sciencedaily.com/releases/2004/07/040714091020.htm>.
Los Alamos National Laboratory. (2004, July 14). Los Alamos Computers Probe How Giant Planets Formed. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2004/07/040714091020.htm
Los Alamos National Laboratory. "Los Alamos Computers Probe How Giant Planets Formed." ScienceDaily. www.sciencedaily.com/releases/2004/07/040714091020.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Soyuz Spacecraft Docks With International Space Station: NASA

Soyuz Spacecraft Docks With International Space Station: NASA

AFP (Nov. 24, 2014) A Russian Soyuz spacecraft carrying Italy's first female astronaut safely docks with the International Space Station, according to NASA. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Multi-National Crew Safely Docks at Space Station

Multi-National Crew Safely Docks at Space Station

Reuters - US Online Video (Nov. 24, 2014) A Russian Soyuz rocket delivers a multi-national trio to the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins