Featured Research

from universities, journals, and other organizations

USC Scientist Invents Technique To Grow Superconducting And Magnetic 'Nanocables'

Date:
July 15, 2004
Source:
University Of Southern California
Summary:
A University of Southern California engineer has discovered a way to manufacture composite "nanocables" from a potent new class of substances with extraordinary properties called Transition Metal Oxides (TMOs).

Top left, schematic diagram of process. Bottom left, MgO nanowires ready for coating. Right, completed Fe304 nanocable.
Credit: Image courtesy of University Of Southern California

A University of Southern California engineer has discovered a way to manufacture composite "nanocables" from a potent new class of substances with extraordinary properties called Transition Metal Oxides (TMOs).

Chongwu Zhou, an assistant professor in the USC Viterbi School of Engineering's Department of Electrical Engineering, is creating dense arrays of ultrafine wires made of magnesium oxide (MgO), each coated with uniform, precisely controlled layers of TMO.

In the last decade, TMOs have come under intense investigation because they demonstrate a wide range of potentially highly useful properties including high-temperature superconductivity. Because of the great potential for applications and research, investigators have tried for years to create TMO nanowires, but have so far had limited success.

"But now we can supply a group of previously unavailable materials to the nanotechnology community," Zhou said.

The Zhou team demonstrated the technique with four different TMOs: YBCO, a well-known superconductor with a high transition temperature; LCMO, a material showing "colossal" magnetoresistance; PZT, an important ferroelectric material; and Fe3O4, known as magnetite in its strongly magnetic mineral form.

The new structures all start with a new technique Zhou and his co-workers developed to create arrays of nanowires by condensing MgO vapor onto MgO plates using gold as catalyst. This leads to a forest of MgO nanowires, each 30-100 nanometers in diameter and 3 microns (100 millionth of an inch) long, all growing parallel fashion, at a constant angle to the substrate plate.

"Now the magic starts," Zhou says. A laser vaporizes the TMO, which then condenses directly out of the gaseous state onto the waiting MgO cores in very precise fashion, a process called "pulsed laser deposition."

The final product looks like nano-sized coaxial cable, with an MgO core and TMO sheath. "The trick is we can preserve the TMO composition using this technique," says Zhou, "while other techniques cannot."

Zhou wrote in a paper recently accepted for publication in Nano Letters and now circulating on the Internet, that the assemblies "can be tailored for a wide variety of applications, including low-loss power delivery, quantum computing, ultrahigh density magnetic data storage, and more recently, spintronic applications."

"We … expect that these TMO nanowires may offer enormous opportunities to explore intriguing physics at the nanoscale dimensions."

Zhou, the winner of the Viterbi School of Engineering's 2004 Junior Faculty Research Award, believes that the four new nanowires are only the beginning. "Our synthetic approach will lead to other new nanostructures," he said.

Working with Zhou were Song Han, Chao Li, Zuqin Liu, Bo Lei, Daihua Zhang, Wu Jin, Xiaoleiu Liu, and Tao Tang. A National Science Foundation CAREER award and DARPA supported the research.


Story Source:

The above story is based on materials provided by University Of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University Of Southern California. "USC Scientist Invents Technique To Grow Superconducting And Magnetic 'Nanocables'." ScienceDaily. ScienceDaily, 15 July 2004. <www.sciencedaily.com/releases/2004/07/040714163016.htm>.
University Of Southern California. (2004, July 15). USC Scientist Invents Technique To Grow Superconducting And Magnetic 'Nanocables'. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2004/07/040714163016.htm
University Of Southern California. "USC Scientist Invents Technique To Grow Superconducting And Magnetic 'Nanocables'." ScienceDaily. www.sciencedaily.com/releases/2004/07/040714163016.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins