Featured Research

from universities, journals, and other organizations

Unlocking The Secrets Of Titanium, A 'Key' That Assists Hydrogen Storage

Date:
July 27, 2004
Source:
Brookhaven National Laboratory
Summary:
Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and the New Jersey Institute of Technology have taken steps toward understanding how a titanium compound reacts with a hydrogen-storage material to catalyze the release and re-absorption of hydrogen.

UPTON, NY - Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and the New Jersey Institute of Technology have taken steps toward understanding how a titanium compound reacts with a hydrogen-storage material to catalyze the release and re-absorption of hydrogen. Their results, appearing in the July 19, 2004, issue of Applied Physics Letters, may help scientists learn how similar catalysts work, improve their performance, and possibly develop more efficient storage materials for hydrogen fuel cells.

In the late 1990s, scientists discovered that adding, or “doping,” a small amount of titanium to sodium aluminum hydride, a hydrogen storage compound (also known as sodium alanate), allows it to reversibly release and re-absorb hydrogen. In a sense, the titanium acts like a molecular “key,” a crucial component that facilitates hydrogen absorption and allows the reaction to proceed more rapidly. Until now, however, the nature of that reaction was not well understood.

“We found that the titanium resides on the surface of sodium alanate as a titanium aluminum compound called titanium aluminide, rather than entering the bulk material and replacing other atoms or occupying empty spots within the lattice,” said the study’s lead author, Brookhaven physicist Jason Graetz.

To make their finding, Graetz and his collaborators first prepared two titanium-doped samples by mechanically mixing titanium chloride and sodium alanate using a planetary mill, a device that grinds substances together using marble-sized metal spheres. They then prepared two additional samples from each doped sample (for a total of six): a dehydrided sample (containing no absorbed hydrogen) and a hydrided sample. By working with both types, the researchers were able to study the titanium’s properties before and after hydrogen absorption. This gave them one more way to determine the titanium’s role in the reaction.

The group probed the samples with high-energy x-rays at the National Synchrotron Light Source at Brookhaven, a facility that produces intense beams of x-ray, ultraviolet, and infrared light for research. Because every compound and element on Earth absorbs x-rays differently, having a unique “signature,” the researchers were able to compare the six sample signatures to those of different titanium compounds and pure titanium. From this, they determined that the titanium chloride reacted with sodium alanate to form titanium aluminide.

“Our finding is the first step toward an even more interesting discovery: determining exactly how titanium aluminide helps the hydride release and re-absorb hydrogen,” Graetz said. “Understanding that mechanism may help us identify better catalysts for the sodium alanate system and help us find dopants for new compounds that are currently impractical energy-storage materials, due to the high temperatures and pressures required for the release and re-absorption of hydrogen.”

Sodium alanate is one of several metal-based hydrogen storage materials, called metal hydrides, being investigated for use in hydrogen fuel cells. A fuel cell works like a battery: Hydrogen atoms enter the negative terminal and split into their constituent particles, protons and electrons. The protons pass through the cell to the positive terminal, while the electrons leave the cell as a stream of electric current that can power a car or appliance, for example. The electrons then re-enter the cell at the positive terminal and reunite with the protons and oxygen to form water molecules.

The known hydrides are impractical for fuel cells, which require lightweight materials with high storage capacities, because they are quite heavy and have relatively low storage capacities (less than five percent hydrogen by weight). However, they have more potential than compressed hydrogen gas or liquid hydrogen, which pose explosion and freezing risks. These forms of hydrogen must be stored in tanks under very high pressure or at temperatures cold enough to liquefy the oxygen in air.

This research was funded by Brookhaven’s Laboratory Directed Research and Development (LDRD) Program and the National Science Foundation.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Unlocking The Secrets Of Titanium, A 'Key' That Assists Hydrogen Storage." ScienceDaily. ScienceDaily, 27 July 2004. <www.sciencedaily.com/releases/2004/07/040726084030.htm>.
Brookhaven National Laboratory. (2004, July 27). Unlocking The Secrets Of Titanium, A 'Key' That Assists Hydrogen Storage. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2004/07/040726084030.htm
Brookhaven National Laboratory. "Unlocking The Secrets Of Titanium, A 'Key' That Assists Hydrogen Storage." ScienceDaily. www.sciencedaily.com/releases/2004/07/040726084030.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins