Featured Research

from universities, journals, and other organizations

Neurosurgeons At Rush Explore "Smart" Drug To Treat Brain Cancer

Date:
August 4, 2004
Source:
Rush University Medical Center
Summary:
The use of a "smart" drug that targets cancer cells in the brain following removal of a tumor may provide treatment that can extend the survival of people with the most common form of primary malignant brain tumor, glioblastoma multiforme (GBM).

The use of a "smart" drug that targets cancer cells in the brain following removal of a tumor may provide treatment that can extend the survival of people with the most common form of primary malignant brain tumor, glioblastoma multiforme (GBM).

A phase III research study being conducted at Rush University Medical Center by neurosurgeon Dr. Richard Byrne involves the use of convection-enhanced delivery, a novel drug delivery approach, to facilitate infusion of the study drug, IL13-PE38QQR, into the brain. IL13-PE38QQR is designed to attach to specific receptors on tumor cells that are not present on normal brain cells.

The problem with current treatments for brain tumors is that while neurosurgeons can remove as much as 95 percent or more of a tumor, some cancer cells will remain undetectable and scattered throughout the brain tissue adjacent to the tumor site. Current methods to kill the remaining cancer cells with radiation or chemotherapy have resulted in a median survival rate after initial diagnosis of about nine to twelve months, and normal brain cells can be injured in the process.

Patients in the study first will undergo neurosurgery to remove as much of the GBM tumor as possible. Within a week, magnetic resonance imaging (MRI) will be used to scan the brain tissue around the cavity where the tumor has been removed to identify suspicious areas where cancer cells may remain.

With the target areas identified, Byrne and his team will then perform a second surgical procedure using an image guidance technique to pass catheters through the skull into the brain to reach two to four areas of tissue suspected of harboring residual, infiltrating tumor cells. Following catheter placement, the drug is continually infused or delivered through the catheters into the brain. A pump is used to slowly push the drug solution through the catheters. This method of treatment is referred to as convection-enhanced delivery, or CED. The patient is able to walk around during this time.

IL13-PE38QQR is a hybrid protein that contains the cytokine IL13, which allows the drug to specifically attach or bind to tumor cells that have the IL13 receptor. "Like a key to a lock," the cytokine binds to the receptor and allows the study drug to enter and potentially kill the tumor cells. Normal brain cells remain unaffected because they do not appear to have the IL13 receptor and therefore the study drug does not bind to them.

The positive-pressure, convection-enhanced delivery method is used to diffuse the drug throughout the targeted brain tissue. Convection enhanced delivery to brain tissue allows the drug to bypass the blood-brain barrier, which protects the brain by preventing "foreign substances" such as drugs in the blood from reaching brain tissue, which can occur when drugs are administered systemically. "There are countless success stories of treating tumors that work in cell lines that fail when we try them in the brain, in part because of the blood brain barrier," said Byrne, who is a member of the Chicago Institute of Neurosurgery and Neuroresearch medical group (CINN). He is the principal investigator for the study at Rush.

"Previous studies with this drug have shown that it was safe and that there were some very dramatic responses in terms of eliminating residual tumor in the brain and prolonging patient life. We believe this drug can positively improve life span for some GBM brain tumor patients by destroying the cancerous cells we cannot remove through neurosurgery," said Byrne.

One-third of the patients enrolled in the trial will be randomly assigned to receive one treatment currently available. These patients will undergo surgery to remove the tumor and to have FDA approved chemotherapeutic "wafers" placed in the tumor cavity. The wafers slowly dissolve over 2 to 3 weeks, releasing chemotherapeutic drugs to the area. Two-thirds of the study patients will be randomly assigned to receive the IL13-PE38QQR study drug.

GBM is the most common and aggressive form of primary brain tumors, and most cases occur in people between the ages 40 and 60. GBM is a highly malignant tumor and infiltrates the normal brain tissue surrounding the tumor. GBMs may also invade the membranes covering the brain, or spread via the spinal fluid bathing the brain and spinal cord. Most malignant gliomas are known to re-grow in a location close to the resection cavity left by the removal of the tumor.

People with these brain tumors typically suffer from some degree of symptoms that can include headaches, nausea and vomiting, personality changes, seizures, vision loss and slowing of cognitive function.

Individuals interested in participating in this study must have a diagnosis of recurrent glioblastoma multiforme and the tumor must have reoccurred after surgical resection, radiation and chemotherapy were used to treat the initial tumor.

The "PRECISE" (Phase III Randomized Evaluation of Convection IL13) trial is designed to enroll up to 300 patients. A number of the world's leading brain tumor treatment centers, including Rush University Medical Center, have agreed to participate in the PRECISE trial to further the study of treatments for GBM. NeoPharm, Inc., based in Lake Forest, Ill., funds the study and supplies the IL13-PE338, which was developed in the Laboratory of Molecular Tumor Biology of the U.S. Food and Drug Administration.


Story Source:

The above story is based on materials provided by Rush University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Rush University Medical Center. "Neurosurgeons At Rush Explore "Smart" Drug To Treat Brain Cancer." ScienceDaily. ScienceDaily, 4 August 2004. <www.sciencedaily.com/releases/2004/08/040804083745.htm>.
Rush University Medical Center. (2004, August 4). Neurosurgeons At Rush Explore "Smart" Drug To Treat Brain Cancer. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2004/08/040804083745.htm
Rush University Medical Center. "Neurosurgeons At Rush Explore "Smart" Drug To Treat Brain Cancer." ScienceDaily. www.sciencedaily.com/releases/2004/08/040804083745.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins