Featured Research

from universities, journals, and other organizations

The Hyperspectral Imaging Endoscope: A New Tool For Non-invasive In Vivo Cancer Detection

Date:
August 10, 2004
Source:
Cedars-Sinai Medical Center
Summary:
A newly designed endoscope, capable of providing sub-second polarized spectral images of tissue in vivo (in the body), allows physicians and surgeons to non-invasively survey and sample an entire area without actually removing tissue, and may offer hope as a new tool for detecting cancer early.

LOS ANGELES (August 10, 2004) – A newly designed endoscope, capable of providing sub-second polarized spectral images of tissue in vivo (in the body), allows physicians and surgeons to non-invasively survey and sample an entire area without actually removing tissue, and may offer hope as a new tool for detecting cancer early. Researchers from Cedars-Sinai Medical Center in Los Angeles and Carnegie Mellon University in Pittsburgh describe the instrument's capabilities and clinical applications in the July 2004 issue of Progress in Biomedical Optics and Imaging.

The new device, named the Hyperspectral Imaging Endoscope (HSIE), is a standard medical endoscope enhanced with a customized imaging fiber. Working together with a camera, a laptop computer and a tunable light source covering the visible and near-infrared range, the HSIE system is capable of acquiring rapid spectral images of tissues, allowing physicians to non-invasively survey and sample an entire area of tissue in vivo (within the body). Compared to traditional biopsy where a small amount of tissue is removed and then examined in a laboratory, the HSIE system provides a non-contact method of gaining as much information as possible about an area without removing any tissue.

The system is relatively simple and based on the intrinsic properties of tissue and light, explains Daniel Farkas, Ph.D., Director of the Minimally Invasive Surgical Technologies Institute at Cedars-Sinai, and one of the study authors. "When light impacts tissue, it gives back a certain scattering pattern with spectral oscillations depending on the size of the scattering object. This pattern gives us a relatively quantitative idea whether or not a tissue area contains cancerous cells since the nuclei of cells in pre-cancerous and cancerous tissues are enlarged. The theory and spectroscopy have been beautifully worked out by our colleagues in Boston and Los Alamos, and we have now moved this type of investigation into the endoscopic imaging domain."

The pilot study using the HSIE system involved examining epithelial tissue derived from lung cancer specimens. Currently the number one cause of cancer death worldwide, lung cancer is difficult to detect in its early stages and often isn't found until after it has spread.

At the University of Pittsburgh Medical Center and Allegheny General Hospital, the two clinical sites where the first version of the HSIE instrument was tested, data were gathered from patients who had been treated previously for lung cancer and were to undergo an endoscopic examination to see if the cancer had returned. The area to be biopsied in the traditional way by the surgeon was first scanned using the HSIE, and then sent to the laboratory. The result of the pathological examination was then treated as "ground truth." According to Dr. Farkas, there was a good correlation between the HSIE imaging and the pathologists' diagnoses.

Based on the experience of physicians participating in the pilot study, Dr. Farkas anticipates that the medical community will embrace the new endoscope in its practices. "Physicians can use their own endoscope of choice exactly as they have before. By using this additional fiber, they'll be able to have either two kinds of images on separate screens or overlay the spectrally classified image onto the regular image. In early acceptance stages, this could only guide biopsy, but as the matches with pathology are confirmed, the true diagnostic value of HSIE could be established."

Dr. Farkas, a biophysicist and past Fulbright scholar, is the vice chair for research of Cedars-Sinai's Department of Surgery as well as director of the Minimally Invasive Surgical Technologies Institute, which was formed in May 2002 to pursue the development and application of advanced technologies in surgery.

While epithelial tissue is the primary application, Dr. Farkas said the HSIE system can also be used for gastrointestinal investigations and maybe even for breast duct endoscopy.

"Surgery is clearly gravitating to the minimally invasive arena. The technology we employed in building the HSIE system gives us a great opportunity to improve a number of important components of surgical intervention. We are working now on an implementation using acousto-optic tunable filters, invented for hyperspectral satellite reconnaissance. It may sound like science fiction now, but I think we may ultimately be able to use the endoscope to not only detect cancers early, but to treat them using modalities such as localized photodynamic therapy, laser ablation or gene therapy. This closer coupling, spatially and temporally, between diagnosis and treatment may be the cornerstone of future surgical intervention."

###

The study was funded by the National Institutes of Health (NCI Unconventional Innovation Program, N01-CO-07119), the National Science Foundation (Major Instrumentation Grant BESOO 79483) and the Pennsylvania Department of Health (Commonwealth Universal Research Enhancement program, Tobacco Settlement Act 77-2001).

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California's gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.


Story Source:

The above story is based on materials provided by Cedars-Sinai Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Cedars-Sinai Medical Center. "The Hyperspectral Imaging Endoscope: A New Tool For Non-invasive In Vivo Cancer Detection." ScienceDaily. ScienceDaily, 10 August 2004. <www.sciencedaily.com/releases/2004/08/040810093015.htm>.
Cedars-Sinai Medical Center. (2004, August 10). The Hyperspectral Imaging Endoscope: A New Tool For Non-invasive In Vivo Cancer Detection. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2004/08/040810093015.htm
Cedars-Sinai Medical Center. "The Hyperspectral Imaging Endoscope: A New Tool For Non-invasive In Vivo Cancer Detection." ScienceDaily. www.sciencedaily.com/releases/2004/08/040810093015.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins