Featured Research

from universities, journals, and other organizations

TRMM Sees Rain From Hurricanes Fall Around The World

Date:
August 18, 2004
Source:
NASA/Goddard Space Flight Center
Summary:
Since rain and freshwater flooding are the number one causes of death from hurricanes in the United States over the last 30 years, better understanding of these storms is vital for insuring public safety. A recent study funded by NASA and the National Science Foundation offers insight into patterns of rainfall from tropical storms and hurricanes around the world.

TRMM observed Hurricane Charley as it crossed the Caribbean Sea and made landfall on the southwest coast of Florida on August 13. This image shows the horizontal distribution of rain intensity and combines data from TRMM's Precipitation Radar (PR), Microwave Imager (TMI) and Visible Infrared Scanner (VIRS). Credit: NASA/NASDA

Since rain and freshwater flooding are the number one causes of death from hurricanes in the United States over the last 30 years, better understanding of these storms is vital for insuring public safety. A recent study funded by NASA and the National Science Foundation offers insight into patterns of rainfall from tropical storms and hurricanes around the world.

Researchers at the University of Miami's Rosenstiel School of Marine and Atmospheric Science, Miami, and the National Oceanic and Atmospheric Administration Atlantic Oceanographic and Meteorological Laboratory's Hurricane Research Division, Miami, used data from NASA's Tropical Rainfall Measuring Mission (TRMM) satellite to show how rain falls at different rates in different areas of a storm. The results were published in the July issue of the journal Monthly Weather Review.

The results are already being used in a model developed at the Hurricane Research Division to estimate rainfall accumulation related to tropical cyclones. The findings are important because they may help in the development of better forecasts.

The TRMM satellite offers the best measurements of how and where rain falls around tropical cyclones. This is because its orbit is low to the Earth, allowing more detailed information on storms, and it was designed to cover the tropics.

Tropical cyclones consist of winds rotating around low-pressure centers in the tropics that can develop into everything from tropical storms to Category 5 hurricanes.

From 1998 through 2000, TRMM observed 260 tropical cyclones in six major ocean basins. Researchers found that the rainfall intensity and where the heaviest rains fell varied depending on a storm's wind speeds, its location and the environment of each basin.

Scientists looked at three types of tropical cyclones, based on a standard system for classifying these storms. Tropical storms have wind speeds of less than 73 miles per hour (mph). Category 1 and 2 hurricanes blow with winds of 74 to 110 mph, and Category 3 to 5 hurricanes' winds range above 110 mph.

"This study is important because we know very little about the rainfall distribution in tropical cyclones," said lead author of the study, Manuel Lonfat, a University of Miami researcher. "It revolutionizes our understanding of the distribution of rain in tropical cyclones," he added. Lonfat is a NASA Earth System Science Fellowship recipient.

"More than 50 percent of deaths in the U.S. from tropical cyclones over the last 30 years are related to freshwater flooding. So this is currently a very large problem for the forecasting community," Lonfat said.

When all storms were averaged together the most intense rainfall occurred within 50 kilometers (about 31 miles) of a storm's center, with evidence of very large rain rates as far as 300 to 400 kilometers (about 186 to 250 miles) from the center.

When all storms were averaged and analyzed basin by basin, storms in the North Indian basin were the wettest, and East-central Pacific storms were the driest. The Atlantic and West Pacific storms showed similar rain rates: this at first surprised the researchers since Western Pacific storms tend to be bigger and were presumed to be wetter.

Researchers also found that the storms were not symmetric, meaning that rain fell at different rates in different areas of a storm. If a round storm were divided into four equal parts through the center, called quadrants, in general it was found that the heaviest rainfall occurred in one of the front quadrants. However, the heaviest rainfall shifted from the front-left to the front-right quadrant as a tropical cyclone's intensity increased.

Tropical storms were less symmetric, while stronger hurricanes had a more symmetric inner core. In the Southern Hemisphere, the heaviest rain occurred to the front-left of the storm's path, while in the Northern Hemisphere the heaviest rainfall peaked in the front-right quadrant.

Normally, the only way to accurately measure rain falling from a hurricane is when it gets close enough to the coast to be picked up by National Weather Service radars, or by rain gages. Since TRMM is space-based, researchers can assess the rainfall over vast tracts of ocean, where these storms spend most of their lives.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "TRMM Sees Rain From Hurricanes Fall Around The World." ScienceDaily. ScienceDaily, 18 August 2004. <www.sciencedaily.com/releases/2004/08/040818090100.htm>.
NASA/Goddard Space Flight Center. (2004, August 18). TRMM Sees Rain From Hurricanes Fall Around The World. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2004/08/040818090100.htm
NASA/Goddard Space Flight Center. "TRMM Sees Rain From Hurricanes Fall Around The World." ScienceDaily. www.sciencedaily.com/releases/2004/08/040818090100.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Climate Rallies Spur Change?

Will Climate Rallies Spur Change?

Newsy (Sep. 21, 2014) Organizers of the People's Climate March and other rallies taking place in 166 countries hope to move U.N. officials to action ahead of their summit. Video provided by Newsy
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
Climate Change Rally Held in India Ahead of UN Summit

Climate Change Rally Held in India Ahead of UN Summit

AFP (Sep. 20, 2014) Some 125 world leaders are expected to commit to action on climate change at a UN summit Tuesday called to inject momentum in struggling efforts to tackle global warming. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins