Featured Research

from universities, journals, and other organizations

Self-assembly Generates More Versatile Scaffolds For Crystal Growth

Date:
September 1, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
Self-organizing synthetic molecules originally used for gene therapy may have applications as templates and scaffolds for the production of inorganic materials. Using electrostatic interactions between oppositely charged molecules as the binding force, scientists are learning how to organize these synthetic molecules into more versatile complexes with large and controllable pore sizes.

CHAMPAIGN, Ill. — Self-organizing synthetic molecules originally used for gene therapy may have applications as templates and scaffolds for the production of inorganic materials. Using electrostatic interactions between oppositely charged molecules as the binding force, scientists are learning how to organize these synthetic molecules into more versatile complexes with large and controllable pore sizes.

Related Articles


“By investigating the fundamental design rules for the control of self-assembled supramolecular structures, we can now organize large functional molecules into nanoscopic arrays,” said Gerard Wong, a professor of materials science and engineering and of physics at the University of Illinois. Wong and his colleagues report their latest experimental results in the September issue of the journal Nature Materials.

“We showed that the self-assembly of charged membranes and oppositely charged polymers into structures can be understood in terms of some simple rules,” said Wong, senior author of the paper. “We then applied those rules and demonstrated that we could organize molecules into regular arrays with pore sizes ten times larger than in previous DNA-membrane complexes.”

Early self-assembled DNA-membrane structures consisted of periodic stacks of alternating layers of negatively charged DNA “rods” and positively charged lipid membranes. The pores between the DNA rods could be used to package individual ions, which can in turn be crystallized. This work was published last year by Wong’s group, and was featured as a “Chemistry Highlight of 2003” by Chemical & Engineering News.

But generalizing this idea to larger pores was difficult. In previous work, Wong and colleagues showed that actin, a protein found in muscle cells, also reacts with lipid membranes to create ordered structures. The actin-membrane assemblies, however, consisted of the membrane sandwiched between layers of actin, with little room to house or organize other molecules.

In the latest work, the researchers substituted a rod-shaped virus for the DNA. While having a diameter close to that of actin, the virus has a charge density comparable to DNA. The resulting virus-membrane complexes have pore sizes about 10 times larger than the DNA-membrane complexes, and can be used to hold and organize large functional molecules.

“Even though these supramolecular systems were originally designed for gene therapy, we’ve shown that they can be used as templates for organizing other molecules,” Wong said. “An example would be the biomineralization of inorganic nanocrystals, in a way analogous to bone formation.”

To produce bone, nature uses organic molecules to organize inorganic components that become mineralized through additional chemical reactions. Scientists want to create synthetic molecules that work as nanostructured scaffolds of biomolecules and perform tasks ranging from non-viral gene therapy to biomolecular templating and nanofabrication.

“Ultimately, we would like to have designer molecules that do exactly what we want,” Wong said. “Right now we are still elucidating the rules for making these scaffolds and their interactions with inorganic components. It will take some time to move from fundamental science to supramolecular engineering.”

Co-authors of the paper with Wong are Illinois graduate students Lihua Yang, Hongjun Liang, Thomas Angelini, John Butler and Robert Coridan; and Brown University physics professor Jay Tang. The work was funded by the U.S. Department of Energy and the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Self-assembly Generates More Versatile Scaffolds For Crystal Growth." ScienceDaily. ScienceDaily, 1 September 2004. <www.sciencedaily.com/releases/2004/09/040901091620.htm>.
University Of Illinois At Urbana-Champaign. (2004, September 1). Self-assembly Generates More Versatile Scaffolds For Crystal Growth. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2004/09/040901091620.htm
University Of Illinois At Urbana-Champaign. "Self-assembly Generates More Versatile Scaffolds For Crystal Growth." ScienceDaily. www.sciencedaily.com/releases/2004/09/040901091620.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins