Featured Research

from universities, journals, and other organizations

Rare Deficit Maps Thinking Circuitry

Date:
September 2, 2004
Source:
NIH/National Institute Of Mental Health
Summary:
Using brain imaging, neuroscientists at the NIH’s National Institute of Mental Health (NIMH) have pinpointed the site of a defect in a brain circuit associated with a specific thinking deficit.

3-D MRI scan rendering of the brain’s white matter (nerve fibers), showing small area (yellow) found to lack grey matter in people with Williams Syndrome. Impaired input from this area is thought to have resulted in lack of activation in downstream parts of the circuit, which processes locations of objects, when participants performed visual-spatial tasks, such as paying attention to locations of faces and houses (red), assembling puzzle-like pieces and matching geometric objects (blue). Overlap regions are shown in purple.
Credit: Image courtesy of NIH/National Institute Of Mental Health

Using brain imaging, neuroscientists at the NIH’s National Institute of Mental Health (NIMH) have pinpointed the site of a defect in a brain circuit associated with a specific thinking deficit. Their study demonstrates how a rare genetic disorder, Williams Syndrome, can offer clues as to how genetic flaws may translate into cognitive symptoms in more common and complex major mental disorders. Andreas Meyer-Lindenberg, M.D., Karen Berman, M.D., and colleagues, traced the thinking deficit to a circuit at the back of the brain that processes locations of objects in the visual field. The researchers report on their Magnetic Resonance Imaging (MRI) study in the September 2, 2004 Neuron.

The study focused on the inability to visualize an object as a set of parts and then construct a replica, as in assembling a puzzle — a key cognitive deficit experienced by people with Williams Syndrome. In addition to this visuospatial construction deficit, people with Williams Syndrome also tend to be overly friendly and anxious and often have mental retardation and learning disabilities. Compared to most mental disorders, which are thought to involve complex interactions between multiple genes and environmental triggers, the genetic basis of Williams Syndrome is remarkably well understood. People with the disorder lack about 21 genes in a particular part of chromosome 7.

“Williams Syndrome yields a unique opportunity to study how genes influence our ability to construct our social and spatial worlds,” said NIMH Director Thomas Insel, M.D. “By studying people with this disorder, we can discover how genetic mutations change not only molecular and cellular processes, but lead to differences in the brain circuitry for complex aspects of cognition.”

To identify where in the brain things go awry in the visuospatial construction deficit, Meyer-Lindenberg and Berman recruited 13 “high functioning” Williams Syndrome patients with normal intelligence. Even though they were missing the same genes as their mentally retarded peers, they were able to perform complex cognitive tasks during functional MRI (fMRI) experiments, and their brain structure and activity could be compared with matched healthy controls of similar IQ.

The researchers suspected that the visuospatial construction deficit would be found in a visual processing circuit that courses forward and upward from the back of the brain. This “where” circuit processes information about locations of objects and spatial relationships, whereas a parallel “what” circuit, running downward from the back of the brain, handles information about content of objects.

In the fMRI phase of the study, participants were scanned while performing spatial tasks — matching geometric objects, assembling puzzle-like pieces into a square, and attending to the location of faces and houses. In each case, only those with Williams Syndrome failed to activate the “where” circuit, while the controls showed increased activation in that circuit. The patients’ brains showed no difference from controls on tasks that activated the “what” circuit.

Using structural MRI, the researchers found a small region early in the “where” circuit that lacked gray matter (neuron bodies) in the Williams Syndrome participants. Its location — conspicuously just before the functionally abnormal areas — raised suspicions; and a path analysis confirmed that the functional abnormalities could be accounted for by defective input from this structurally abnormal area. The researchers hypothesize that it is likely the primary site of the visuospatial construction deficit.

They are now attempting to trace the deficit to individual genes in this structurally abnormal area.

“The location of the abnormality also suggests a strategy for improving visual-spatial-construction function,” noted Meyer-Lindenberg. “It is like a roadblock, but it should mainly affect stimuli that don’t move. Incorporating motion into stimuli might provide an alternate route and circumvent the problem by engaging temporal lobe circuitry.”

In addition to the NIMH Intramural Research Program, the research was also funded by a grant from the National Institute on Neurological Disorders and Stroke (NINDS) to Dr. Carolyn Mervis, University of Louisville.

Also participating in the study were Philip Kohn, Dr. Shane Kippenhan, Rosanna Olsen, NIMH, and Dr. Colleen Morris, University of Nevada.

###

NIMH and NINDS are part of the National Institutes of Health (NIH), the Federal Government's primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Mental Health. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Mental Health. "Rare Deficit Maps Thinking Circuitry." ScienceDaily. ScienceDaily, 2 September 2004. <www.sciencedaily.com/releases/2004/09/040902090929.htm>.
NIH/National Institute Of Mental Health. (2004, September 2). Rare Deficit Maps Thinking Circuitry. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2004/09/040902090929.htm
NIH/National Institute Of Mental Health. "Rare Deficit Maps Thinking Circuitry." ScienceDaily. www.sciencedaily.com/releases/2004/09/040902090929.htm (accessed August 20, 2014).

Share This




More Health & Medicine News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
101-Year-Old Working Man Has All The Advice You Need

101-Year-Old Working Man Has All The Advice You Need

Newsy (Aug. 19, 2014) Herman Goldman has worked at the same lighting store for almost 75 years. Find out his secrets to a happy, productive life. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins