Featured Research

from universities, journals, and other organizations

Helios Mishap Blamed On Inability To Predict Aircraft's Increased Sensitivity To Atmospheric Disturbances

Date:
September 7, 2004
Source:
National Aeronautics And Space Administration
Summary:
The board that investigated the loss of the remotely operated Helios Prototype aircraft determined the mishap resulted from the inability to predict the aircraft's increased sensitivity to atmospheric disturbances, such as turbulence.

Solar-powered, remotely piloted, and flying at about 25 miles per hour, NASA's Helios aircraft, is pictured above at 10,000 feet in skies northwest of Kauai, Hawaii on August 13.
Credit: Photo Carla Thomas, courtesy DFRC, NASA

September 3, 2004 -- The board that investigated the loss of the remotely operated Helios Prototype aircraft released its final report today.

The board determined the mishap resulted from the inability to predict, using available analysis methods, the aircraft's increased sensitivity to atmospheric disturbances, such as turbulence, following vehicle configuration changes required for the long-duration flight demonstration.

The Helios Prototype aircraft involved in the mishap was a proof-of-concept solar electric powered flying wing designed to operate at high altitudes for long duration flight. The failure occurred during a flight from the U.S. Navy's Pacific Missile Range Facility (PMRF) on the Hawaiian island of Kauai on June 26, 2003.

The propeller-driven aircraft was flying under guidance of ground-based controllers from AeroVironment, Inc., Monrovia, Calif., the plane's builder and operator, with assistance from NASA's Dryden Flight Research Center, Edwards, Calif., personnel. The aircraft was destroyed when it sustained structural failure and fell into the Pacific Ocean. No other property damage or any injuries occurred as a result of the mishap.

The lightweight, flexible flying wing took off at 10:06 a.m. local time. At 10:22 and 10:24 a.m., the aircraft encountered atmospheric turbulence, typical of conditions expected by the test crew, causing abnormally high wing dihedral (upward bowing of both wingtips). Unobserved mild pitch oscillations began, but quickly diminished, according to post-test data analysis.

At about 10:36 a.m., the aircraft again experienced normal turbulence and transitioned into an unexpected, persistent high wing dihedral configuration. As a result, the aircraft became unstable, exhibiting growing pitch oscillations. Airspeed deviated from the normal flight speed with the deviations rapidly increasing with every cycle of the oscillation.

The aircraft's design speed was subsequently exceeded. The resulting high dynamic pressures caused the wing leading edge secondary structure on the outer wing panels to fail; the solar cells and skin on the upper surface were ripped off. The remotely piloted aircraft came down within the confines of the Pacific Ocean test range, northwest of PMRF.

"The mishap underscores our need to assess carefully our assumptions as we push the boundaries of our knowledge," said Dr. Victor Lebacqz, NASA's Associate Administrator for the Office of Aeronautics. "It should not, however, diminish the significant progress AeroVironment and NASA have made over the past 10 years in advancing the capabilities of this unique class of aircraft on many successful flights, including Helios' record setting flight to just under 97,000 feet in August 2001. It is important that we learn from this experience, and apply the board's findings and recommendations to help ensure the payoffs of such vehicles are fully realized," he added.

The report is available on the Internet at: http://www.nasa.gov/pdf/64317main_helios.pdf

Still photos related to this release are available on the Web at: http://www.dfrc.nasa.gov/Newsroom/ResearchUpdate/Helios/Previews/index.html

For information about NASA on the Internet, visit: http://www.nasa.gov


Story Source:

The above story is based on materials provided by National Aeronautics And Space Administration. Note: Materials may be edited for content and length.


Cite This Page:

National Aeronautics And Space Administration. "Helios Mishap Blamed On Inability To Predict Aircraft's Increased Sensitivity To Atmospheric Disturbances." ScienceDaily. ScienceDaily, 7 September 2004. <www.sciencedaily.com/releases/2004/09/040907083833.htm>.
National Aeronautics And Space Administration. (2004, September 7). Helios Mishap Blamed On Inability To Predict Aircraft's Increased Sensitivity To Atmospheric Disturbances. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2004/09/040907083833.htm
National Aeronautics And Space Administration. "Helios Mishap Blamed On Inability To Predict Aircraft's Increased Sensitivity To Atmospheric Disturbances." ScienceDaily. www.sciencedaily.com/releases/2004/09/040907083833.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins