Featured Research

from universities, journals, and other organizations

Proving That Shape-Shifting Robots Can Get A Move On

Date:
September 17, 2004
Source:
National Science Foundation
Summary:
It started with tennis balls. As a former collegiate tennis player, Daniela Rus habitually rolls two tennis balls around in her hand as she paces her office. As a robotics researcher at Dartmouth College, she wondered why the tennis balls shouldn’t be able to roll themselves around.

Nine Crystal robot modules developed in the Dartmouth Robotics Lab form a 2-D self-reconfigurable modular robot system composed of atoms. Each atom is a square that moves by expanding and contracting by a factor of two in each dimension.
Credit: Robert Fitch, Dartmouth College

ARLINGTON, Va. -- It started with tennis balls. As a former collegiate tennis player, Daniela Rus habitually rolls two tennis balls around in her hand as she paces her office. As a robotics researcher at Dartmouth College, she wondered why the tennis balls shouldn’t be able to roll themselves around.

Related Articles


She soon determined that electromagnets didn’t have enough lifting power to solve the tennis-ball problem. However, her question led to a decade-long research program into the challenges of designing robots that reconfigure themselves to perform different tasks. Most recently, Rus and Dartmouth Robotics Lab researchers developed the first control methods that guarantee such self-reconfigurable robots won’t fall apart as they change shape or move across a surface.

The paper by postdoctoral researcher Zach Butler, graduate student Keith Butler, Rus and visiting professor Kohji Tomita from Japan's National Institute of Advanced Industrial Science and Technology appeared in the September 2004 issue of the International Journal of Robotics Research (IJRR).

"These latest papers show it is possible to develop self-reconfiguration capabilities in a way that has analytical guarantees," said Rus, who moved to MIT in January after 10 years as director of Dartmouth’s Robotics Lab. "Understanding exactly how your system works and when you can trust it and when you can’t is very important." In 2002, Rus received a MacArthur Foundation Fellowship, a so-called "genius award," for her work, which has been supported by National Science Foundation (NSF) awards since 1996.

Robots are usually designed to perform one task very well, whether it’s assembling parts in a factory or vacuuming the living room. But ask those robots to perform another task or even the same task in a new environment, and you’re asking for trouble.

Self-reconfigurable robots, on the other hand, can reshape themselves as their task or environment changes, ideally without human intervention. A walking robot used for search-and-rescue operations would transform into a snake-like form to slither through small spaces in a collapsed building. A rolling robot exploring the surface of Mars would flow like water over a vertical drop or "flow" uphill onto a rock ledge.

However, today's state-of-the-art shape-shifting robots are a long way from living up to that vision. Several research groups around the world are tackling the many significant mechanical and control challenges involved in having a robot change shape.

Over the past decade, assisted by more than 50 Dartmouth undergraduate and graduate students passing through her lab, Rus has made advances on both the mechanical and control fronts. On the mechanical side, she pioneered the design of 3-D shape-shifting robots built out of "expanding cubes," such as the Crystal modules.

Each Crystal module, or "atom," has sides that extend and contract and that use a 'key-in-lock' mechanism to attach to neighboring atoms. The expanding-cube concept is an example of so-called "lattice robots," which can assume a wide variety of 3-D shapes, an advantage over robots whose modules can only form long, thin chains.

Shape-shifting for such lattice robots boils down to exercises in control and planning, which happen at two levels. At one level, the robot must plan how to remodel itself from shape A to shape B. At another level, the robot must also plan the series of shapes needed to accomplish more complicated tasks, such as moving over rough terrain.

Early work in self-reconfiguring robots used centralized methods to control how the pieces reassembled themselves. Today, researchers in the field generally acknowledge the need for distributed methods, in which each robotic module takes at least some control of its own destiny.

"Since we are talking about potentially very large systems, with thousands of individual parts, it’s important to consider distributed control and planning," Rus said. "And parallel and distributed algorithms are hard to guarantee."

The recent IJRR paper and a related paper in the September 2003 IJRR by Butler and Rus provide some of the first distributed methods for generating provably correct steps for both types of control and planning. In other words, robots that reconfigure themselves using these plans won't fall to pieces, in a very literal sense, or get irreversibly stuck as they move from place to place.

The papers present sets of about a dozen rules that instruct lattice robots how to roam over terrain, build tall structures to overcome obstacles or enter closed spaces through small tunnels. Rus and her colleagues analyzed the simpler rule sets for correctness and developed automated methods to prove that the more complicated ones worked. More complex tasks, however, demand more complicated rule sets, and Rus is now investigating ways that would allow robots to learn their own rules.

In addition to the theoretical guarantees, the papers represent a departure from another norm. Often in robotics, a control method is tied to specific hardware, making it more difficult to apply lessons from one robot system to another. Rus's work applies to control and planning for the entire class of lattice robots, of which the Crystal atoms are one example.

"The [latest IJRR] paper is an example of a methodology for developing and proving algorithms and understanding control systems in general," Rus said. "It’s important to learn more general lessons. You get a deeper sense about the self-reconfiguration problem."


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Proving That Shape-Shifting Robots Can Get A Move On." ScienceDaily. ScienceDaily, 17 September 2004. <www.sciencedaily.com/releases/2004/09/040917090409.htm>.
National Science Foundation. (2004, September 17). Proving That Shape-Shifting Robots Can Get A Move On. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2004/09/040917090409.htm
National Science Foundation. "Proving That Shape-Shifting Robots Can Get A Move On." ScienceDaily. www.sciencedaily.com/releases/2004/09/040917090409.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
After Sony Hack, What's Next?

After Sony Hack, What's Next?

Reuters - US Online Video (Dec. 19, 2014) The hacking attack on Sony Pictures has U.S. government officials weighing their response to the cyber-attack. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
How 2014 Shaped The Future Of The Internet

How 2014 Shaped The Future Of The Internet

Newsy (Dec. 18, 2014) It has been a long, busy year for Net Neutrality. The stage is set for an expected landmark FCC decision sometime in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins