Featured Research

from universities, journals, and other organizations

ORNL Microscope Pushes Back Barrier Of 'How Small'

Date:
September 20, 2004
Source:
Oak Ridge National Laboratory
Summary:
Oak Ridge National Laboratory researchers, using a state-of-the-art microscope and new computerized imaging technology, have pushed back the barrier of how small we can see--to a record, atom-scale 0.6 angstrom. ORNL, a Department of Energy national laboratory, also held the previous record, at 0.7 angstrom.

Looking straight down on a silicon crystal, this direct, subangstrom- resolution image shows dumbbell-shaped rows of atoms with a spacing of 0.78 angstrom between each pair. Analysis of the power spectrum shows the presence of information down to a record 0.6 angstrom. The image was obtained with Oak Ridge National Laboratory's aberration- corrected 300-kilovolt Z-contrast scanning transmission electron microscope.
Credit: Image courtesy of Oak Ridge National Laboratory

OAK RIDGE, Tenn., Sept. 17, 2004 -- Oak Ridge National Laboratory researchers, using a state-of-the-art microscope and new computerized imaging technology, have pushed back the barrier of how small we can see--to a record, atom-scale 0.6 angstrom. ORNL, a Department of Energy national laboratory, also held the previous record, at 0.7 angstrom.

As reported in the Sept. 17, 2004, issue of the journal Science, researchers obtained the improved resolution with ORNL's 300-kilovolt Z-contrast scanning transmission electron microscope (STEM), aided by an emerging technology called aberration correction. The direct images have been acknowledged as proof of atom-scale resolution below one angstrom and provide researchers with a valuable tool for designing advanced materials.

"Looking down on a silicon crystal, we can see atoms that are only 0.78 angstroms apart, which is the first unequivocal proof that we're getting subangstrom resolution. The same image shows that we're getting resolution in the 0.6 angstrom range," said ORNL Condensed Matter Sciences Division researcher Stephen Pennycook.

An angstrom is an atomic scale unit of measure of one ten-billionth of a meter, approximately equaling the diameter of an atom.

The ORNL researchers teamed with the Nion Company to produce the images of pairs of silicon atom columns in a crystal. The Kirkland, Wash., firm provided the aberration correction technology that corrects errors introduced to the images by imperfections in the electron lenses. Although conceived decades ago, aberration correction technology was only recently made feasible by advances in computational techniques and image-analysis algorithms.

Aberration-corrected microscopy provides a direct image with fewer opportunities for "artifacts," or incorrect image information. Uncorrected microscopy can achieve subangstrom resolution by combining a collection of many images to achieve an image, but it also increases the introduction of artifacts into the images.

By revealing columns of atoms and the position of introduced, "dopant," atoms, the atom-scale images enable a new understanding of materials' properties, Pennycook said. The finer images also enable researchers to more accurately model and predict the behavior of materials on computers before time-consuming and expensive bench tests are conducted.

"With aberration correction you can see everything better, basically," Pennycook said. "It's always better to see what's what. For the materials, chemical and nano sciences, you want to see what is going on at the atomic scale--how atoms bond and how things work."

The latest ORNL images improve on the previous resolution of 0.7 angstrom, also achieved with ORNL's Z-contrast STEM.

In addition to Pennycook, an ORNL corporate fellow, team members are Matt Chisholm, Andy Lupini, Albina Borisevich and Bill Sides Jr. of ORNL's Condensed Matter Sciences Division and Pete Nellist, Niklas Dellby and Ondrej Krivanek of Nion. The work is funded by the Basic Energy Sciences program of DOE's Office of Science.

ORNL has recently constructed an advanced materials characterization laboratory that will further the application of aberration-correction technologies to atom-scale microscopy.

Oak Ridge National Laboratory is a multiprogram laboratory managed for the Department of Energy by UT-Battelle.


Story Source:

The above story is based on materials provided by Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Oak Ridge National Laboratory. "ORNL Microscope Pushes Back Barrier Of 'How Small'." ScienceDaily. ScienceDaily, 20 September 2004. <www.sciencedaily.com/releases/2004/09/040920065417.htm>.
Oak Ridge National Laboratory. (2004, September 20). ORNL Microscope Pushes Back Barrier Of 'How Small'. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2004/09/040920065417.htm
Oak Ridge National Laboratory. "ORNL Microscope Pushes Back Barrier Of 'How Small'." ScienceDaily. www.sciencedaily.com/releases/2004/09/040920065417.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins