Featured Research

from universities, journals, and other organizations

Targeting Stress Response Proteins On Breast, Prostate Tumor Cells Shows Promise

Date:
September 24, 2004
Source:
University Of Texas M. D. Anderson Cancer Center
Summary:
Stress response proteins present on the outside of cancer cells offer a promising target for a novel drug "guidance system," say researchers at The University of Texas M. D. Anderson Cancer Center.

HOUSTON - Stress response proteins present on the outside of cancer cells offer a promising target for a novel drug "guidance system," say researchers at The University of Texas M. D. Anderson Cancer Center.

Their study, published in the September issue of the journal Cancer Cell, demonstrates how researchers can find protein tags that are unique to cancer cells and then tweak a drug delivery system to zero in on those tags and destroy the cells.

In this case, the strategy worked on breast and prostate cancer cell lines in animal models and in patient-derived samples in the laboratory, say the researchers, who add that they plan to test it next in human tumors.

"It's been very effective so far, and we think targeting this protein might also work in other tumor types," says Renata Pasqualini, Ph.D., a professor of Medicine and Cancer Biology at M. D. Anderson. "But, of course, we won't know that until we can test it in patients."

The advance builds upon the work of both Pasqualini and Wadih Arap, M.D., Ph.D., also a professor of Medicine and Cancer Biology at M. D. Anderson, who have jointly pioneered the "zip code" approach to designing drugs. They search for proteins that are specific to different tissue sites, or "addresses," within the body, which can then be used as drug targets.

This study, led by Pasqualini and Arap, evolved from a recent finding in their laboratory. Published in Nature Biotechnology in 2003, they reported that a protein in prostate cancer cells seems to be correlated with poor prognosis and advanced disease.

The protein was identified as glucose-regulated protein-78 (GRP78), which is part of a large family of "stress response proteins" that appear when a cell is in trouble. That stress could be due to a number of problems, ranging from chemotherapy or radiation damage to the low oxygen levels typical of cancer development, says Arap. "These stress proteins do many things that give cells a better fighting chance to survive, such as chaperoning misfolded proteins that arise under stress for destruction as needed," he says. "And the more stress a tumor cell is under, the more stress response proteins are produced."

Most researchers, including Arap and Pasqualini, believed these stress response proteins were found exclusively inside cells. That made sense because when the cell died and fell apart, these proteins, now released into the bloodstream, could elicit antibodies that could be correlated to disease stage in prostate cancer. But in this new work, it became clear to the researchers that the GRP78 proteins were actually being anchored in the cell membrane and presented on the outside of cancer cells for recognition. They say that raises the intriguing possibility that GRP78 surface expression could function as a signal to the immune system that help was needed.

"This is a major finding, because it means that the protein could be accessible to a drug that is designed to stick onto it," says Arap. "It is much easier to target a protein on the outside of a cell than to send drugs into the cell."

The team fashioned a drug that could "dock" onto the protein. The drug consisted of a ligand - a sequence of an amino acid that fit precisely onto the protein like a key into a lock - that was fused onto a corkscrew-shaped drug that the researchers knew could induce a cell to self-destruct.

They tested the drug on both prostate and breast cancer cells in the laboratory, and then in animals who had been implanted with human cancer cells of these types. "It worked in these tests and we also showed that it could bind to human tumor tissue," says Pasqualini.

"Breast cancer and prostate cancer share one important feature - they both metastasize to the bone marrow," says Pasqualini. "We hope that further studies will allow us to show that this therapy may be particularly active against metastatic disease."

"Together, these preclinical data validate GRP78 on the tumor cell surface as a potentially relevant molecular target that could prove useful for translational applications," says Arap.

The study was funded by the National Cancer Institute and the Gilson Longenbaugh Foundation. The team includes Marco Arap, M.D., an academic urologist now at the University of São Paulo Medical School in Brazil and Johanna Lahdenranta, Ph.D., who share the first author position; Paul Mintz, Ph.D.; Amin Hatitou, Ph.D.; and Alvaro Sarkis, M.D.


Story Source:

The above story is based on materials provided by University Of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas M. D. Anderson Cancer Center. "Targeting Stress Response Proteins On Breast, Prostate Tumor Cells Shows Promise." ScienceDaily. ScienceDaily, 24 September 2004. <www.sciencedaily.com/releases/2004/09/040921083223.htm>.
University Of Texas M. D. Anderson Cancer Center. (2004, September 24). Targeting Stress Response Proteins On Breast, Prostate Tumor Cells Shows Promise. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2004/09/040921083223.htm
University Of Texas M. D. Anderson Cancer Center. "Targeting Stress Response Proteins On Breast, Prostate Tumor Cells Shows Promise." ScienceDaily. www.sciencedaily.com/releases/2004/09/040921083223.htm (accessed September 19, 2014).

Share This



More Health & Medicine News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) — As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com
What HealthKit Bug Means For Your iOS Fitness Apps

What HealthKit Bug Means For Your iOS Fitness Apps

Newsy (Sep. 18, 2014) — Apple has delayed the launch of the HealthKit app platform, citing a bug. Video provided by Newsy
Powered by NewsLook.com
U.S. Food Makers Surpass Calorie-Cutting Pledge

U.S. Food Makers Surpass Calorie-Cutting Pledge

Newsy (Sep. 18, 2014) — Sixteen large food and beverage companies in the United States that committed to cut calories in their products far surpassed their target. Video provided by Newsy
Powered by NewsLook.com
Residents Vaccinated as Haiti Fights Cholera Epidemic

Residents Vaccinated as Haiti Fights Cholera Epidemic

AFP (Sep. 18, 2014) — Haitians receive the second dose of the vaccine against cholera as part of the UN's vaccination campaign. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins