Featured Research

from universities, journals, and other organizations

Fast, Robust, And A Blast From The Past, Mechanical Memory Switch Outstrips Chip Technology

Date:
October 1, 2004
Source:
Boston University
Summary:
There are no gears or levers involved, nor even, for those who remember such things, punch cards transported in oblong boxes. Yet research by a Boston University team led by physicist Pritiraj Mohanty does update a decidedly "old" technology in a bid to build better, faster data storage systems for today's computers.

There are no gears or levers involved, nor even, for those who remember such things, punch cards transported in oblong boxes. Yet research by a Boston University team led by physicist Pritiraj Mohanty does update a decidedly "old" technology in a bid to build better, faster data storage systems for today's computers.

Related Articles


Mohanty, an assistant professor in BU's Department of Physics, has carved tiny switches out of silicon, fabricating mechanical switches that are thousands of times smaller than a human hair.

When put through their paces as data storage tools, these nano-sized devices were capable of functioning at densities that far exceed the physical limitations of electromagnetic systems and could retrieve information at speeds that cruise in the megahertz and gigahertz ranges, millions and billions of cycles per second, respectively.

Mohanty also found that the switches operated on miniscule amounts of power, about a million-fold less than that demanded by current systems.

"This is a new ball game," say Mohanty. "By taking a new look at old technology, we have produced memory cells that are faster and better than those currently used. This mechanical device is a completely new approach to improving data storage."

The researchers used electron-beam lithography to produce the beam-and-pad design of the tiny devices, carving the switches from wafers made of single-crystal layers of silicon and silicon oxide. E-beam lithography, developed for use by the integrated circuit industry, has become a staple fabrication technique for microelectromechanical (MEMS) devices, the ultra-small sensors, switches, and gears integral to the microtechnology and nanotechnology industries.

To test the device's capabilities, the researchers clamped the nanostructure on each end, effectively suspending the beam, then drove a megahertz-frequency current through an attached electrode. When driven strongly enough, the beam switched between two different and distinct states, the needed "0" and "1" conditions commonly used to describe the process for accessing stored data.

The tiny dimensions of the device allowed it to vibrate quickly, achieving a millions-of-cycles-per-second frequency of 23.57 megahertz. This speed reflects the rate at which the device could "read" stored information. As a comparison, the hard drives in current laptops can read at a speed of a few hundred kilohertz (thousands of cycles per second) in actual operation. The researchers speculate that even smaller beams could be produced and that such devices could achieve true read speeds in the gigahertz range -- billions of cycles per second.

Other advantages of this tiny mechanical memory system include its angstrom-sized "range of motion," allowing it vibrate between states using only femtowatts of power, compared with the milliwatts or microwatts of power needed for read-write functions in current machines. The device also overcomes the superparamagnetic effect that limits contemporary systems, allowing the beams to be packed at densities that exceed the 100 gigabits per square inch that is the current ceiling. In addition, unlike conventional electronic or magneto-electronic storage systems, these nanomechanical memory cells are resilient in electrical and magnetic fields.

"They are extremely robust," says Robert Badzey, a team member and graduate student in BU's Department of Physics. "Not only can these mechanical switches withstand radiation disturbances, like solar flares, they also are tough enough to work even after being dropped."

In addition to Mohanty and Badzey, the BU research team included Guiti Zolfagharkhani, a graduate student in physics, and Alexei Gaidarzhy, a graduate student in the College of Engineering's Department of Aerospace and Mechanical Engineering. Their paper will appear in the October 18 issue of Applied Physics Letters, a journal of the American Institute of Physics. The research was supported by grants from the Nanoscale Exploratory Research program of the National Science Foundation and the Army Research Laboratory of the Department of Defense.

The Physics Department at Boston University provides research opportunities in areas such as experimental high-energy physics and astrophysics, molecular biophysics, theoretical condensed-matter physics, and polymer physics. Research in the Department of Aerospace and Mechanical Engineering includes robotics, MEMS, and nanotechnology.

###

Boston University, with an enrollment of more than 29,000 in its 17 schools and colleges, is the fourth-largest independent university in the United States.


Story Source:

The above story is based on materials provided by Boston University. Note: Materials may be edited for content and length.


Cite This Page:

Boston University. "Fast, Robust, And A Blast From The Past, Mechanical Memory Switch Outstrips Chip Technology." ScienceDaily. ScienceDaily, 1 October 2004. <www.sciencedaily.com/releases/2004/10/041001092325.htm>.
Boston University. (2004, October 1). Fast, Robust, And A Blast From The Past, Mechanical Memory Switch Outstrips Chip Technology. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2004/10/041001092325.htm
Boston University. "Fast, Robust, And A Blast From The Past, Mechanical Memory Switch Outstrips Chip Technology." ScienceDaily. www.sciencedaily.com/releases/2004/10/041001092325.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins