Featured Research

from universities, journals, and other organizations

UNC Scientists Identify Sticky Protein In Sickle Cell Red Blood Cells

Date:
October 15, 2004
Source:
University Of North Carolina School Of Medicine
Summary:
New research from the University of North Carolina at Chapel Hill reveals why red blood cells from people with sickle cell disease are stickier than healthy red cells, pointing the way to potential new treatments for sickle cell disease.

CHAPEL HILL -- New research from the University of North Carolina at Chapel Hill reveals why red blood cells from people with sickle cell disease are stickier than healthy red cells, pointing the way to potential new treatments for sickle cell disease. The study shows that a protein found on the surface of immature red blood cells, or reticulocytes, is responsible for those cells' adhesion to blood vessel walls.

Related Articles


Reticulocytes are found at considerably higher levels in the blood of sickle cell patients than healthy patients, and so the likelihood of sticky patches or blockages forming on a blood vessel wall is greatly increased. The blockages lead to problems including strokes, pneumonia, recurring infections and painful episodes known as crises that often require hospitalization.

The new findings appear in the Oct. 8 issue of the Journal of Biological Chemistry.

The work of Dr. Julia Brittain provides new clues to better controlling stickiness of sickle red blood cells, said Dr. Leslie Parise, professor and vice chair of pharmacology at UNC's School of Medicine. Brittain is a postdoctoral fellow in Parise's laboratory.

"It was previously thought that sickle red blood cells lodged in blood vessels because they're sickle-shaped, more rigid and just became physically stuck," said Brittain, the study's co-author. "But while the physical lodging is a component, an equally important component is that sickle red blood cells are simply stickier."

Brittain and her co-authors showed that the cell-surface protein Alpha-4Beta-1 is activated by another cell-surface protein, CD47, and that Alpha-4Beta-1 was responsible for sickle red blood cell adhesion to a blood vessel wall protein called thrombospondin.

CD47 binds to and is activated by soluble, blood-borne thrombospondin, which is found elevated in sickle cell patients and which initiates an atypical signaling cascade inside the red blood cells. This aberrant signaling ultimately culminates in the activation of Alpha-4Beta-1 and an increase in red blood cells sticking to the blood vessel wall, said Brittain.

"Even though sickle cell patients are particularly vulnerable to blocked blood vessels, the signaling mechanisms identified in sickle reticulocytes seem to be present in reticulocytes found in other anemic patients as well," said Brittain. "Our current thinking is that these results may benefit patients suffering from a number of anemias and not just sickle cell disease" The UNC study also identified where Alpha-4Beta-1 binds to thrombospondin.

"This knowledge opens the door to possible therapies. Inhibitors of the class of proteins to which Alpha-4Beta-1 belongs, the integrins, are being tested for use in diseases such as Crohn's disease, and these inhibitors are now attractive and rational therapies for sickle cell disease," said Parise.

Along with Brittain and Parise, co-authors are Dr. Kenneth I. Ataga, research instructor in the department of medicine, and Dr. Eugene P. Orringer, professor of medicine and executive associate dean for faculty affairs in the School of Medicine.

Dr. Jaewon Han, an investigator from the Scripps Research Institute, collaborated with the UNC researchers on this study.

Funding was provided by National Institutes of Health grants and performed in collaboration with the Duke-UNC Comprehensive Sickle Cell Center.


Story Source:

The above story is based on materials provided by University Of North Carolina School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina School Of Medicine. "UNC Scientists Identify Sticky Protein In Sickle Cell Red Blood Cells." ScienceDaily. ScienceDaily, 15 October 2004. <www.sciencedaily.com/releases/2004/10/041013084854.htm>.
University Of North Carolina School Of Medicine. (2004, October 15). UNC Scientists Identify Sticky Protein In Sickle Cell Red Blood Cells. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2004/10/041013084854.htm
University Of North Carolina School Of Medicine. "UNC Scientists Identify Sticky Protein In Sickle Cell Red Blood Cells." ScienceDaily. www.sciencedaily.com/releases/2004/10/041013084854.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins