Featured Research

from universities, journals, and other organizations

Molecular Mechanism Sheds Light On Neurodegenerative Diseases

Date:
October 26, 2004
Source:
Northwestern University
Summary:
Alzheimer's. Parkinson's. Lou Gehrig's. Huntington's. These neurodegenerative diseases exhibit loss of nerve function in different ways, from memory lapses to uncontrollable muscular movements, but it is now believed that these diseases share many common molecular mechanisms.

EVANSTON, Ill. --- Alzheimer's. Parkinson's. Lou Gehrig's. Huntington's. These neurodegenerative diseases exhibit loss of nerve function in different ways, from memory lapses to uncontrollable muscular movements, but it is now believed that these diseases share many common molecular mechanisms.

Related Articles


A team of Northwestern University scientists, led by Richard I. Morimoto, John Evans Professor of Biology, has made a key discovery toward understanding one of these mechanisms. In studying toxic proteins involved in Huntington's disease, they discovered that the disease-causing protein severely interferes with the working of the proteasome, the cellular machine responsible for eliminating damaged proteins within the cell.

The findings, which could lead to an understanding of how to prevent neurodegenerative diseases and to the development of effective drugs, will be published Oct. 27 in The EMBO Journal, a publication of the European Molecular Biology Organization.

The proteasome is responsible for cell homeostasis. In healthy cells, proteins perform their function and then, with the help of the proteasome, disappear. If idle and damaged proteins remain, their presence can affect cell behavior.

Misfolded and damaged proteins are common to all human neurodegenerative diseases. They clump together to form toxic aggregates that destroy cell function and cause disease. Morimoto's team is the first to demonstrate in living human cells and in real time that the toxic protein aggregates, in this case caused by mutant Huntingtin, bind to the proteasome machine irreversibly and prevent the complete degradation of the proteins. This evidence could help explain the disease process.

"We believe this suggests why Huntington's disease is so destructive," said Morimoto. "Once bound, the toxic proteins do not release the proteasome. This interference with the normal clearance of proteins has a cumulative and amplifying negative effect. The proteins that are normally degraded build up."

The researchers' data also show that the toxic proteins and proteasome are bound together in a close and stable fashion, indicating that the proteins are trapped within the proteasome. This could explain the negative consequences on the health of the cell in which disease builds over decades before symptoms result.

In addition to Morimoto, other authors on the EMBO paper are Carina I. Holmberg, a post-doctoral fellow and the paper's lead author; Kwame N. Mensah, a graduate student; and Andreas Matouschek, associate professor of biochemistry, molecular biology and cell biology, from Northwestern University; and Kristine E. Staniszweski, a former graduate student at Northwestern.

The research was supported by the National Institutes of Health, the Huntington Disease Society of America Coalition for the Cure and the Daniel F. and Ada L. Rice Foundation.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Molecular Mechanism Sheds Light On Neurodegenerative Diseases." ScienceDaily. ScienceDaily, 26 October 2004. <www.sciencedaily.com/releases/2004/10/041022104816.htm>.
Northwestern University. (2004, October 26). Molecular Mechanism Sheds Light On Neurodegenerative Diseases. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2004/10/041022104816.htm
Northwestern University. "Molecular Mechanism Sheds Light On Neurodegenerative Diseases." ScienceDaily. www.sciencedaily.com/releases/2004/10/041022104816.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins