Featured Research

from universities, journals, and other organizations

Polaroid Sunglasses Let Astronomers Take A Closer Look At Black Holes

Date:
November 18, 2004
Source:
Particle Physics & Astronomy Research Council
Summary:
An international team led by an Edinburgh astronomer have discovered that by studying polarised light from black holes they can focus much more closely on what exactly is going on around them.

At the center of an active galaxy lies a monster: a supermassive black hole. As matter falls toward the hole, it forms a rotating, flattened disk called an accretion disk. Through processes still unknown, some black holes can form jets of matter and energy that stream outward. Active galactic nuclei, like the one depicted here in an artist’s illustration, are sites of gamma ray formation. GLAST will observe thousands of such sources.
Credit: Aurore Simonnet, Sonoma State University

An international team led by an Edinburgh astronomer have discovered that by studying polarised light from black holes they can focus much more closely on what exactly is going on around them. The work is published this week in the monthly notices of the Royal Astronomical Society on November 11th.

Related Articles


Studying black holes at the centre of galaxies is difficult. A huge amount of material is falling on to the centre in an active black hole system, and this falling material is thought to power the black hole, but scientists still don't understand this powering mechanism. One critical reason is that these black holes are just too far away for astronomers to isolate the light from them - or more accurately, the light from the compact region where the black holes are actually producing their energy.

However, Kishimoto at the University of Edinburgh and the international team of Antonucci at UC Santa Barbara, Boisson at Paris Observatory, and Blaes also at UC Santa Barbara, have used the Keck I telescope in Hawaii and European Southern Observatory's Very Large Telescope in Chile, to do this isolation of the light. They have looked at a small part of the light emitted from black holes - light that has been scattered as it passes through the clouds very nearby. This scattered light can cleverly be picked up by looking through a polaroid filter just like the lens of polaroid sunglasses, which essentially blocks the unwanted light from elsewhere in the galaxy. The scattered light is polarised so the light waves all line up in the same direction and can pass through the Polaroid filter, but light from the surrounding area which is not polarised is excluded by the filter.

Dr Kishimoto, who leads the team, explained the importance of the new method: "For the first time we can use visible light to focus on the part of a galaxy that is very close to the black hole. We are interested in an area only about one light-day across. Until now, without using Polaroid filters, we couldn't separate the visible light from the black hole from the light coming from a much larger region about 100 light-days across." To put this in context, the galaxies surrounding the black holes are about 30,000 light years across.

As a result of this closer look the team have found a new signal in the observed light that can provide information about the material around a black hole. The signal, called a 'Balmer edge' feature, reveals properties of the material and will allow the team to carry out more detailed modelling of the temperature and density of the region near black holes than has been possible before now. This feature is commonly used to diagnose the nature of the surface of the Sun and other stars, but has never before been seen in visible light from black holes.

The next step is for Kishimoto and his team to take a look at more black holes using this technique to see if the black holes at the centre of different types of galaxy all look the same. They can then try to understand the mechanism that powers a black hole. Kishimoto and the team are now observing many other black holes using other large telescopes.

###

1. One light-day is the distance light travels in one day i.e. 1/365 of a light-year.


Story Source:

The above story is based on materials provided by Particle Physics & Astronomy Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Particle Physics & Astronomy Research Council. "Polaroid Sunglasses Let Astronomers Take A Closer Look At Black Holes." ScienceDaily. ScienceDaily, 18 November 2004. <www.sciencedaily.com/releases/2004/11/041116235926.htm>.
Particle Physics & Astronomy Research Council. (2004, November 18). Polaroid Sunglasses Let Astronomers Take A Closer Look At Black Holes. ScienceDaily. Retrieved March 3, 2015 from www.sciencedaily.com/releases/2004/11/041116235926.htm
Particle Physics & Astronomy Research Council. "Polaroid Sunglasses Let Astronomers Take A Closer Look At Black Holes." ScienceDaily. www.sciencedaily.com/releases/2004/11/041116235926.htm (accessed March 3, 2015).

Share This


More From ScienceDaily



More Space & Time News

Tuesday, March 3, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: SpaceX Launches Rocket, Satellites on Board

Raw: SpaceX Launches Rocket, Satellites on Board

AP (Mar. 2, 2015) SpaceX launched it&apos;s 16th Falcon 9 rocket from Cape Canaveral, Florida on Sunday night. The rocket was carrying two commercial communications satellites. (March 2) Video provided by AP
Powered by NewsLook.com
Astronauts Leave Space Station for Third Spacewalk

Astronauts Leave Space Station for Third Spacewalk

Reuters - News Video Online (Mar. 1, 2015) NASA Commander Barry Wilmore and Flight Engineer Terry Virts perform their third spacewalk in eight days outside the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Spacesuit Water Leaks Not An Issue On Latest ISS Walk

Spacesuit Water Leaks Not An Issue On Latest ISS Walk

Newsy (Mar. 1, 2015) Astronauts are ahead of schedule with hardware upgrades to the International Space Station, despite last week&apos;s spacesuit water leak scare. Video provided by Newsy
Powered by NewsLook.com
Nitrogen-Based Life Might Swim On Saturn's Largest Moon

Nitrogen-Based Life Might Swim On Saturn's Largest Moon

Newsy (Feb. 28, 2015) Researchers at Cornell University theorize life might exist on Saturn’s largest moon as nitrogen-based organisms. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins