Featured Research

from universities, journals, and other organizations

Drug May Hinder Recovery From Heart Attacks

Date:
November 18, 2004
Source:
University Of Alberta
Summary:
Some new generation COX-2 inhibitors may not allow heart attack patients to recover fully, research indicates. Researchers at the University of Alberta have discovered a basic cellular process the body uses to balance pH in cells--also critical to recovery following a heart attack--is compromised by certain novel COX-2 inhibitors.

Some new generation COX-2 inhibitors may not allow heart attack patients to recover fully, research indicates.

Related Articles


Researchers at the University of Alberta have discovered a basic cellular process the body uses to balance pH in cells--also critical to recovery following a heart attack--is compromised by certain novel COX-2 inhibitors.

Bicarbonate transporters, enzymes critical to maintaining this delicate balance of bicarbonate across the cell membrane, are potently inhibited from doing their work by some clinically used non-steroidal anti-inflammatory drugs such as celecoxib, the active ingredient in Celebrex.

Celecoxib is an effective anti-inflammatory drug because of its effects on the enzyme cyclooxygenase-2 (COX-2). The work from the Casey laboratory indicates that the reported side-effects of celecoxib may result from their unintended inhibition of the body's ability to move bicarbonate.

The work was headed up by principal researcher Joe Casey, a University of Alberta physiology professor.

Bicarbonate (HCO3-) is the primary pH buffer of our bodies and the primary waste product of cellular energy production. Movement of the base, HCO3-, into or out of a cell will alkalinize or acidify the cell. Our cells carefully control the concentration and movement of HCO3- across the plasma membrane by regulation of bicarbonate transport proteins (BT) that can rapidly catalyse the transmembrane movement of HCO3-. The focus of Dr. Casey's laboratory's research is to understand the processes of transmembrane HCO3- transport at the molecular and cellular levels.

The work will appear in the November 23 issue of Molecular Membrane Biology. Co-researchers included Patricio Morgan, a postdoctoral research fellow in the Casey Research Group, and Claudiu Supuran, of the University of Florence, Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica,Sesto Fiorentino, Italy.

Dr. Casey's work is funded by the Canadian Institutes of Health Research and the Heart and Stroke Foundation. Dr. Casey is a Senior Scholar of the Alberta Heritage Foundation for Medical Research.


Story Source:

The above story is based on materials provided by University Of Alberta. Note: Materials may be edited for content and length.


Cite This Page:

University Of Alberta. "Drug May Hinder Recovery From Heart Attacks." ScienceDaily. ScienceDaily, 18 November 2004. <www.sciencedaily.com/releases/2004/11/041117002303.htm>.
University Of Alberta. (2004, November 18). Drug May Hinder Recovery From Heart Attacks. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2004/11/041117002303.htm
University Of Alberta. "Drug May Hinder Recovery From Heart Attacks." ScienceDaily. www.sciencedaily.com/releases/2004/11/041117002303.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins